数学IA 講義 2単位 1学期

Mathematics 1A

【担当教員】

小林 昇治

【教員室または連絡先】

環境システム棟268室

【授業目的及び達成目標】

理工学における数学的方法の基本である微分積分学の初歩を学び,必要最小限の基礎的応用能力を身に つけることを目的とする。

【授業内容及び授業方法】

基本的な重要事項を解説し、例題の模範解答を与える。教科書以外の話題や例題を扱うこともある。極限と 関数の概念を導入し、微分の基本的な考え方を理解させる。幾何学や物理学等への応用についても触れる

【授業項目】

- 1) 実数 2) 数列とその極限 3) 関数とその極限
- 4)連続関数

- 5)初等関数 6)微分と導関数 7)平均値の定理
- 8)微分の応用
- 9) 高階導関数
- 10)テイラー展開とその応用

【教科書】

標準的な初等微分積分学の教科書を使用する。

【成績の評価方法と評価項目】

原則として学期中に2回の試験を行う。評価基準はほぼ50%づつ。

【留意事項】

高等学校における「数学」の中心的部分をきちんと学習していることを前提とする。数学演習Iを併せて履修することが望ましい。

数学IB 講義 2単位 1学期

Mathematics 1B

【担当教員】

岩瀬 誠一

【教員室または連絡先】

非常勤講師

E-mail:iwase@nagaoka-ct.ac.jp

【授業目的及び達成目標】

理工学における数学的方法の基本である線形代数の初歩を学び、必要最小限の基礎的応用能力を身につけることを目的とする。

【授業キーワード】

行列, 行列式, 連立1次方程式

【授業内容及び授業方法】

基本的な重要事項を解説し、概念の把握・例題の理解に努める。教科書以外の話題や例題も扱う。

【授業項目】

- 1)行列の定義・演算
- 2) 行列式の定義・計算
- 3)逆行列
- 4) 連立1次方程式
- 5)ベクトルの定義・演算(矢線ベクトル)

【教科書】

標準的な初等線形代数学の教科書を使用する。

【成績の評価方法と評価項目】

原則として学期中に2回の試験を行う。評価基準はほぼ50%づつ。

【留意事項】

高等学校における「数学」の中心的部分をきちんと学習していることを前提とする。 数学演習Iを併せて履修することが望ましい。 数学演習 I 演習 1単位 1学期

Exercise in Mathematics 1

【担当教員】

小林 昇治•原 信一郎•木村 宗弘•岩瀬 誠一

【教員室または連絡先】

環境システム棟268室(小林), 環境システム棟267室(原), 電気2号棟270室, 非常勤講師(岩瀬)

【授業目的及び達成目標】

数学IA, IBで講義した事項のうちで最重要なものを選び、よりきちんと身につくように主に問題演習をおこなう。

【授業内容及び授業方法】

受講生全員に演習問題を解かせる。適宜小テストを行い、自宅学習のための課題を課すこともある。

【授業項目】

数学IA, IBの講義項目を参照のこと。

【教科書】

数学IA, IBと同じ教科書を使用する。さらに別の演習書を使用することもある。

【成績の評価方法と評価項目】

時間内の演習実績、小テストおよびレポート課題を総合的に評価する。

【留意事項】

高等学校における「数学」の中心的部分をきちんと学習していることを前提とする。数学IA, IBを併せて履修していることを前提とする。

物理学Ⅰ 講義 2単位 1学期

Physics 1

【担当教員】

北谷 英嗣·赤羽 正志

【教員室または連絡先】

電気1号棟304室(北谷),電気1号棟308室(赤羽)

【授業目的及び達成目標】

力学の基本概念、及び諸法則を理解し、その取扱いに習熟することを目的とする。 本科目は,教育目標の(1),(4)に寄与する.

【授業キーワード】

ベクトル, 加速度, 運動の法則, 運動方程式, 単振動, 仕事, エネルギー

【授業内容及び授業方法】

まず、座標とベクトルの基礎を解説する。続いて、力学の基本概念、特に質点, 加速度等とは何かについて学ぶ。 次に、その運動を支配する法則を理解し、具体的に等加速度運動, 単振動等の様々な運動について学ぶ。 定期的に課題レポート(小テスト)を課す.

【授業項目】

- 1)質点と剛体(0.5回)
- 2)座標とベクトル(1.5回) 3)速度と加速度(2回)
- 4)運動の法則(2回)
- 5)運動方程式(2回)
- 6)単振動(3回)
- 7)仕事とエネルギー(3回)

【教科書】

「力学(新訂版)」阿部龍蔵著 サイエンス社

【成績の評価方法と評価項目】

1.評価方法

小テスト,及びレポート 50% 期末試験

- 2.評価項目
- ・加速度, 力の意味を理解していること.
- ・運動の法則を理解していること.
- ・簡単な運動について、運動方程式が書け、実際に解くことができること.
- ・仕事とエネルギーについて理解し、現実の問題に適用できること.

General Chemistry 1

【担当教員】

丸山 一典·鈴木 秀松

【教員室または連絡先】

化学経営情報1号棟521室(丸山), 生物1号棟555室(鈴木)

【授業目的及び達成目標】

現代社会における化学の重要さを念頭におき、あらゆる分野の基礎となる化学的な知識や考え方について修得する。特に、小さい原子や分子の動きとして現象を捉えることを特徴とする化学的な考え方について把握し、暗記物でない化学の面白さについて理解を深める。

元素、原子、化学結合、周期表、有効数字、SI単位、モル、濃度、無機化合物、有機化合物、ボイル・シャル ルの法側、状態方程式、蒸気圧、溶液、コロイド

【授業内容及び授業方法】

講義で使用する教科書の内容を理解するためには微積分の知識を必要とせず化学を履修したことがなくて も差し支えない。本講義では熱心な初学者が持つであろう素朴な疑問にできるだけ対処し、しかも無味乾燥 な暗記物に終わらないよう最新の話題も織りまぜて講義を進める。授業は週1回で計15回行う。

【授業項目】

- 第 1回 元素と原子

- 第 2回 化学結合と分子の形 第 3回 化学的な性質 第 4回 元素のグループ分けと周期表
- 第 5回 有効数字、SI単位 第 6回 モル,濃度
- 第7回 中間試験
- 第8回 気体の性質
- 第 9回 液体の性質
- 第10回 固体の性質
- 第11回 無機化合物と無機工業化学(1) 第12回 無機化合物と無機工業化学(2)
- 第13回 有機化合物と有機工業化学(1)
- 第14回 有機化合物と有機工業化学(2)
- 第15回 学期末試験

【教科書】

「化学の扉」丸山一典・西野純一・天野力・松原浩・山田明文・小林高臣 共著(2000) 朝倉書店

「ブラディー般化学(上)」、「ブラディー般化学(下)」 J.E.Brady・G.E.Humiston 共著、若山信行・一国雅 巳·大島泰郎 共訳(1991)東京化学同人

「ベッカー 一般化学(上)」、「ベッカー 一般化学(下)」 R.S.Becker・W.E.Wentworth 共著、木下實・安部明 廣·大島泰郎 共訳(1983)東京化学同人

【成績の評価方法と評価項目】

- 1.評価方法
 - 中間試験(50%)および学期末試験(50%)により評価する。
- (1)分子レベルで諸現象を捉える化学的な考え方の理解
- (2)化学で用いる種々の記号の意味や単位の把握
- (3)化学反応の表記法の習得
- (4)物質量であるモルの概念とモル濃度の把握
- (5) 気体、液体、固体の性質を分子レベルの反応として把握 (6) 幾つかの無機化合物の性質と製造法の理解
- (7)幾つかの有機化合物の性質と製造法の理解

【留意事項】

化学実験及び演習Iを同時に履修することが望ましい。

実験 2単位 1学期

Physics Laboratory and Exercise 1

【担当教員】

宮田 保教・北谷 英嗣

【教員室または連絡先】

機械建設1号棟402室(宮田), 電気1号棟304室(北谷)

【授業目的及び達成目標】

実験においては、物理学で用いられる実験技術、解析法を修得し、物理学I・IIで修得する事象を実験によって確かめるとともに、解析法を身につける。また、演習においては、物理学Iの講義内容を理解し、応用力を養うことを目的として、必要とされる数学的内容を含め、講義内容に対応した物理学演習を行う。

【授業キーワード】

物理的概念の体得、計測器の取扱い、測定値の解析、精度評価、レポート作成

【授業内容及び授業方法】

実験時間2コマ(2週間)を単位として下記実験項目を1つずつ行い、1週演習をおこなう。

第1週目の実験においては、その実験テーマの内容、目的を理解すること、その実験テーマのための装置の取り扱い法に習熟すること、得られるデータの解析法を体得することを目的として、予備実験を行い、実験計 画書を作成する。第2週目の実験においては、実験計画書に従い実験を実施、解析し、レポートにまとめ提 出する。

演習は授業に対応した例題を解き、授業内容の理解を深める。

高等学校において物理学を未履修の者および推薦入学者は、実験の解析に必要な物理的、数学的知識 が不足している場合があるので、実験にかえてそれらの講義、演習を行う場合がある。

【授業項目】

実験テーマとしては、講義のみでは概念の把握しにくいもの、講義では時間的に詳細にはふれられない内 容、物理的概念の把握に適した内容等に関して、用意されている。

- 1.力学(角運動量、慣性力、液体の表面張力) 2.波動(光の回折と干渉、表面張力波) 3.熱(固体の比熱、熱起電力)

- 4.光(光の波長の測定)
- 5.電磁気(電子のe/m)
- 6.原子物理(GM管によるβ線の吸収、Plank定数)
- 7.その他

演習は授業の進行に対応させた問題により行う。

【教科書】

「基礎物理学実験」 永田、飯尾、宮田著 東京教学社

【成績の評価方法と評価項目】

実験は、実験態度、実験レポート、演習は、演習時間に実施する小テストにより評価する。

実験と演習の評価の割合は実施時間数に対応させ、ほぼ2:1である。 実験は自分で経験し、習得することが重要であるので、出席を重視する。そのため、実験評価は、実験(40%)、実験計画等(10%)、レポート(40%)により行う。(実験にかえて演習を行った場合には、そのは別は関する。 の演習に関する試験により評価する。)

演習は小テストにより評価し、期末試験は行わない。

- 2.評価項目
- ・与えられた課題の目的の理解
- ・背景となっている理論の理解
- 実験方法の理解と実施
- ・実験結果の整理と解析、誤差の評価
- 表、グラフによる整理
- •得られた結果に対する考察と検討
- ・読み手の立場に立った判り易いレポートを書ける

【留意事項】

出席を重視するので、病気等で欠席した場合、あるいは不幸等で出席できなかった場合は、事前、事後にか かわらず、すみやかに担当者に届けでること。事情により追加実験を許可する。

化学実験及び演習Ⅰ

演習及 2単位 1学期

Chemistry Laboratory and Exercise 1

【担当教員】

丸山 一典·鈴木 美和子

【教員室または連絡先】

化学経営情報1号棟521室(丸山), 化学経営情報3号棟一般化学実験室(鈴木)

【授業目的及び達成目標】

化学実験では化学I、IIで学習する内容の一部を実験により検証し、化学で用いられる実験技術、分析法や実験器具の操作法について修得する事を目標とする。さらに、化学への理解を深めるために最も効果的な 演習を行い、化学の基本的な考え方を身につける。

【授業キーワード】

実験講義、模擬実験、実験技術、化学薬品、ガラス器具、レポート(実験報告書)作成、口頭試問

【授業内容及び授業方法】

実験:該当する1項目(計7回)を隔週で行う。該当する実験を行う際に必要な化学的知識についてあらかじ め実験講義と担当教官らによる模擬実験を行う。履修学生は、あらかじめ、該当する実験の計画を各自のノ ートにまとめておき、実験当日に検印を受けた後、実験を行う。実験終了後、口頭試問を行う。 演習:まず化学実験Iおよび化学Iに関連した演習問題(計7回)を行い、各授業の終りに小テストを行なう。

【授業項目】

実験:

- 第1回 実験設備,防火設備および実験機器の取り扱いの習得(6時間)
- 第2回 実験講義と模擬実験1(6時間) 第3回 化学変化に伴う量的関係(6時間)
- 第4回 メチルオレンジの合成(6時間)
- 第5回 実験講義と模擬実験2(6時間) 第6回 気体の分子量測定(6時間)
- 第7回 陽イオンの反応(6時間)

演習:

- 第1回 有効数字とSI単位(3時間)
- 第2回 モルと濃度(4時間)
- 第3回 原子の性質(4時間)
- 第4回 気体の性質(5時間)
- 第5回 液体の性質(4時間)
- 第6回 無機化合物の名前と性質(5時間)
- 第7回 有機化合物の名前と性質(5時間)

【教科書】

「化学実験I、II」長岡技術科学大学一般化学実験室編集、(2004)

【参考書】

「「化学実験の基礎」綿抜邦彦・努台潔・矢野良子・塚田秀行 共著、(1991)、培風館

「化学の扉」丸山一典・西野純一・天野力・松原浩・山田明文・小林高臣 共著(2000)朝倉書店

「ブラディー般化学(上)」、「ブラディー般化学(下)」 J.E.Brady・G.E.Humiston 共著、若山信行・一国雅 巳・大島泰郎 共訳 (1991) 東京化学同人

「ベッカー 一般化学(上)」、「ベッカー 一般化学(下)」 R.S.Becker・W.E.Wentworth 共著、木下實・安部明 廣·大島泰郎 共訳(1983)東京化学同人

【成績の評価方法と評価項目】

1.成績評価

実験(25%)、実験報告書(50%)、演習(25%)により評価する。

- (1)該当する実験内容の適切な理解と実験計画書の作成
- (2)化学薬品および実験器具の取り扱いの実施と習得
- (3)実験遂行中に起こる状況変化に対する適切な対応
- (4)得られた実験結果の適切なまとめと口頭での報告
- (5)実験目的、実験内容、実験結果を適切なグラフ、表などを用いてまとめ、考察を加えた報告書
- (6)演習における小テスト

【留意事項】

実験の服装としては、室内履(運動靴でよい)、白衣を着用する。レポートは1週間以内に提出する。

数学IIA 講義 2単位 2学期

Mathematics 2A

【担当教員】

高橋 秀雄

【教員室または連絡先】

機械建設1号棟403室

【授業目的及び達成目標】

数学IAに引き続き、理工学における数学的方法の基本である微分積分学の初歩を学び、必要最小限の基礎的応用能力を身につけることを目的とする。初等関数の微積分を、道具として使えるようにすることを達成目標とする。

【授業内容及び授業方法】

基本的な重要事項を解説し、例題の模範解答を与える。教科書以外の話題や例題を扱うこともある。積分の概念を導入し、その計算法に習熟させる. 面積や体積等への応用にもふれる。引き続き2変数関数の微積分をも扱う。

【授業項目】

- 1)積分法の基礎
- 2)不定積分の計算
- 3)定積分とその応用
- 4)偏微分法
- 5)偏微分法の応用
- 6)重積分

【教科書】

引き続き数学IAと同じ教科書を使用する。

【成績の評価方法と評価項目】

原則として学期中、10月末~11月初頃と12月末、に2回の試験を行う。必ず受験すること。 試験成績 85%

日堂の努力 15%

試験は筆記用具以外の持ち込みは禁止する。特に携帯電話は、バックにしまうこと。日常の努力とは、課題に応じたレポートを提出すること。

【留意事項】

数学IAを履修していることを前提とする。数学演習IIを併せて履修することが望ましい。微積分を道具として使うには、相応のトレーニングが欠かせない。

数学IIB 講義 2単位 2学期

Mathematics 2B

【担当教員】

岩瀬 誠一

【教員室または連絡先】

非常勤講師

E-mail:iwase@nagaoka-ct.ac.jp

【授業目的及び達成目標】

理工学における数学的方法の基本である線形代数の初歩を学び、必要最小限の基礎的応用能力を身につけることを目的とする。

【授業キーワード】

ベクトル, 平面, 1次変換, 固有値・固有ベクトル

【授業内容及び授業方法】

基本的な重要事項を解説し、概念の把握・例題の理解に努める。教科書以外の話題や例題も扱う。

【授業項目】

- 1)ベクトルの演算(成分表示,内積,外積)
- 2)ベクトル空間
- 3) 直線・平面の方程式
- 4)1次変換(線形写像)
- 5)固有値・固有ベクトル
- 6) 行列の対角化

【教科書】

引き続き数学IBと同じ教科書を使用する。

【成績の評価方法と評価項目】

原則として学期中に2回の試験を行う。

【留意事項】

高等学校における「数学」の中心的部分をきちんと学習していることを前提とする。 数学演習II を併せて履修することが望ましい。 数学演習Ⅱ 演習 1単位 2学期

Exercise in Mathematics 2

【担当教員】

高橋 秀雄・原 信一郎・木村 宗弘・岩瀬 誠一

【教員室または連絡先】

機械建設1号棟403室(高橋), 環境システム棟253室(原), 電気2号棟270室(木村),非常勤講師(岩瀬)

【授業目的及び達成目標】

数学IIA、IIBで講義した事項のうちで最重要なものを選び、よりきちんと身につくように主に問題演習をおこなう。

【授業内容及び授業方法】

受講生全員に演習問題を解かせる。適宜小テストを行い、自宅学習のための課題を課すこともある。

【授業項目】

数学IIA, IIBの講義項目を参照のこと。

【教科書】

数学IIA、IIBと同じ教科書を使用する。さらに別の演習書を使用することもある。

【成績の評価方法と評価項目】

時間内の演習実績、小テストおよびレポート課題を総合的に評価する。

【留意事項】

数学IA, IBおよび数学演習Iを履修済みであることを前提とする。さらに、数学IIA, IIBを併せて履修していることを前提とする。

物理学Ⅱ 2単位 講義 2学期

Physics 2

【担当教員】

北谷 英嗣•江 偉華

【教員室または連絡先】

電気1号棟304室(北谷), 電気1号棟308室(赤羽)

【授業目的及び達成目標】

様々な保存則,相対運動について理解し、その取扱いに習熟する事を目的とする.また、質点系の力学、剛体の力学の基礎も修得する. 本科目は教育目標の(1), (4)に寄与する.

【授業キーワード】

万有引力、相对運動,運動量保存則,角運動量保存則,質点系,剛体

【授業内容及び授業方法】

運動量保存則,角運動量保存則について学び,その活用法を解説する.次に,質点が複数個存在する質点系の力学、特に2体問題について詳述する。また、剛体の力学について学び、大きさを持つ物体の運動を 理解する。

定期的に課題レポート(小テスト)を課す.

【授業項目】

- 1)減衰振動,強制振動(2回)
- 2)万有引力(2回)
- 3)相対運動(2回)
- 4)質点系の力学の基礎(2回)
- 5)運動量保存則(1回)
- 6)角運動量保存則(2回)
- 7)2体問題(1回)
- 8)剛体の力学の基礎(2回)

【教科書】

「力学(新訂版)」阿部龍蔵著 サイエンス社 (原則として物理学Iと同じものを使用する。)

【成績の評価方法と評価項目】

1.評価方法

小テスト,及びレポート 50% 期末試験 50%

- 2.評価項目
- ・質点系の意味を理解し、簡単な系に適用できること。 ・運動量保存則、角運動量保存則を理解し、実際の問題に適用できること。 ・剛体の意味を理解し、簡単な系の運動が計算できること。

【留意事項】

本科目を履修するには「物理学I」を履修していること。

General Chemistry 2

【担当教員】

丸山 一典·松原 浩

【教員室または連絡先】

分析計測センター219室(松原), 化学経営情報1号棟521室(丸山)

【授業目的及び達成目標】

化学Iにおいて化学の基礎的な考え方について慣れたことをふまえ、化学反応により生成する化合物と量や 発生する熱量の計算法を修得し、紙面上に化学式で示される反応が、実際にどの程度進行するかについて の評価法を修得する。

化学平衡、平衡定数、溶解度積、塩基、塩、中和、pH、緩衝液、酸化、還元、酸化数、電池、起電力、エンタ ルピー、反応熱、エントロピー、自由エネルギー、反応速度、活性化エネルギー、光エネルギー、核分裂、核 融合、燃料電池

【授業内容及び授業方法】

物質は何故反応するのか、化学反応の駆動力は何か、といった基本的な疑問を理解する上に必要な基礎 的な知識について講義を行う。授業は週1回で前半を松原、後半を丸山が担当し、計15回行う。

- 第 1回 化学平衡(1)
- 第 2回 化学平衡(2)
- 第3回 酸と塩基の反応(1)
- 第 4回 酸と塩基の反応(2)
- 第 5回 酸化反応と還元反応(1) 第 6回 酸化反応と還元反応(2) 第 7回 中間試験

- 第8回 反応速度
- 第9回 化学反応とエネルギー
- 第10回 エンタルピーと反応熱
- 第11回 エントロピーと自由エネルギー
- 第12回 光反応
- 第13回 核化学
- 第14回 明日のエネルギー
- 第15回 学期末試験

【教科書】

「化学の扉」丸山一典・西野純一・天野力・松原浩・山田明文・小林高臣 共著 (2000) 朝倉書店

「ブラディー般化学(上)」、「ブラディー般化学(下)」 J.E.Brady・G.E.Humiston 共著、若山信行・一国雅 巳・大島泰郎 共訳 (1991) 東京化学同人

「ベッカー 一般化学(上)」、「ベッカー 一般化学(下)」R.S.Becker・W.E.Wentworth 共著、木下實・安部明 廣·大島泰郎 共訳 (1983) 東京化学同人

【成績の評価方法と評価項目】

- 1.評価方法
- 中間試験(50%)および学期末試験(50%)により評価する。
- 2.評価項目
- (1)化学反応による生成物量の計算法の把握
- (2)酸性と塩基性の概念の把握、pHの把握
- (3)化学反応における電子の移動についての理解
- (4)化学反応における速さについての理解
- (5)化学反応により発生する熱量の計算法の把握
- (6)化学反応が進行するかどうかを判定する計算法の把握
- (7) 光エネルギーや核エネルギーに関する基礎知識の掌握

【留意事項】

化学実験および演習IIを同時に履修することが望ましい。

Biology 1

【担当教員】

高原 美規

【教員室または連絡先】

生物1号棟557室

【授業目的及び達成目標】

地球上の多種多様な生物が共通の物質的基盤をもち、共通の祖先に由来することを理解したうえで、現存 の生物が備えている精妙な機能を認識し、さらにその機能の物質的基盤を初歩的なレベルで理解する。

【授業キーワード】

生体物質 細胞の構造 細胞分裂 世代交代 物質循環

【授業内容及び授業方法】

教科書の内容を基礎とし、不足部分を補いながら授業を進める。

【授業項目】

1. 生物学への招待

生物学の範囲 生物の大分類

2. 生体物質

構成元素 水 たんぱく質 たんぱく質の構造

3. 生体物質

核酸 核酸からたんぱく質へ 炭水化物

4. 生体物質

脂質 ビタミンと補酵素

5. 細胞の構造

原核細胞と真核細胞 生体膜

6. 細胞の構造

複膜構造体 細胞内共生説

7. 細胞の構造

単膜構造体 リボソーム 鞭毛

8. 細胞の構造

リボソーム 鞭毛 細胞骨格

9. 細胞分裂

体細胞分裂 細胞周期

10. 細胞分裂

減数分裂 細胞死 11. 世代交代

配偶子形成 受精と減数分裂

12. 物質循環

炭素循環 窒素循環

13. 呼吸

解糖系 TCA回路 電子伝達系

14. 光合成

明反応 暗反応 C4光合成

15. 最終試験

【教科書】

石川 統 編「生物学」東京化学同人

【参考書】

生命科学資料集編集委員会 編「生命科学資料集」東京大学出版会 「総合生物図説」第一学習社

【成績の評価方法と評価項目】

最終試験の成績によって評価する。

物理実験及び演習Ⅱ

実験 2単位 2学期

Physics Laboratory and Exercise 2

【担当教員】

宮田 保教・北谷 英嗣

【教員室または連絡先】

機械建設1号棟402室(宮田), 電気1号棟304室(北谷)

【授業目的及び達成目標】

物理実験及び演習Iに引き続き、物理学で用いられる実験技術、解析法を修得し、物理学I・IIで修得する事 象を実験によって確かめるとともに、解析法を身につける。

【授業内容及び授業方法】

実験時間2コマ(2週間)で下記実験項目を1つずつ行い、隔週演習をおこなう。

【授業項目】

- 1.力学(角運動量、慣性力、液体の表面張力)
- 2.波動(光の回折と干渉、表面張力波) 3.熱(固体の比熱、熱起電力)
- 4.光(光の波長の測定)
- 5.電磁気(電子のe/m)
- 6.原子物理(GM管によるβ線の吸収、Plank定数)
- 7. その他

【教科書】

「基礎物理学実験」永田、飯尾、宮田著 東京教学社

【成績の評価方法と評価項目】

実験は、実験熊度、実験レポート、演習は、演習時間に実施する小テストにより評価する。

実験と演習の評価の割合は実施時間数に対応させ、ほぼ2:1である。 実験は自分で経験し、習得することが重要であるので、出席を重視する。そのため、実験評価は、実験(40%)、実験態度(10%)、実験計画書(10%)、レポート(40%)により行う。演習は小テストにより評価し、期末試験は 行わない。

- 2.評価項目
- ・与えられた課題の目的の理解
- ・背景となっている理論の理解
- 実験方法の理解と実施
- ・実験結果の整理と解析、誤差の評価
- ・表、グラフによる整理 ・得られた結果に対する考察と検討
- ・読み手の立場に立った判り易いレポートを書ける

【留意事項】

出席して実験を実施することを重視するので、病気等で欠席した場合は、すみやかに担当者に届け出ること

化学実験及び演習!!

演習及 2単位 2学期

Chemistry Laboratory and Exercise 2

【担当教員】

丸山 一典·鈴木 美和子

【教員室または連絡先】

化学経営情報1号棟521室(丸山), 化学経営情報3号棟一般化学実験室(鈴木)

【授業目的及び達成目標】

有機合成化学、物理化学、分析化学の分野から選んだテーマについて、化学実験Iよりも高度な実験操作法 やデータの処理法について学習する。

【授業キーワード】

実験講義、模擬実験、実験技術、化学薬品、ガラス器具、レポート(実験報告書)、口頭試問

【授業内容及び授業方法】

実験:該当する1項目(計7回)を隔週で行う。該当する実験を行う際に必要な化学的知識についてあらかじ め実験講義と担当教官らによる模擬実験を行う。履修学生は、あらかじめ、該当する実験の計画を各自のノートにまとめておき、実験当日に検印を受けた後、実験を行う。実験終了後、口頭試問を行う。 演習:まず化学実験IIおよび化学IIに関連した演習問題(計7回)を行い、各授業の終りに小テストを行う。

【授業項目】

実験:

第1回 実験講義1(6時間)

第2回 中和滴定(6時間)

第3回 ベンズアルデヒドの酸化(6時間)

第4回 実験講義2(5時間))

第5回 均一1次反応速度の測定(6時間)

第6回 エステルの合成とその性質(6時間)

第7回 比色分析(6時間)

演習:

第1回 化学平衡(4時間)

第2回 電解質の性質(5時間)

第3回 溶解度積(4時間) 第4回 反応速度(4時間)

第5回 熱化学(5時間)

第6回 エントロピー(5時間)

第7回 光化学(3時間)

【教科書】

「化学実験I、II」長岡技術科学大学一般化学実験室編集、(2004)

【参考書】

「化学実験の基礎」綿抜邦彦・努台潔・矢野良子・塚田秀行 共著、(1991)、培風館

「化学の扉」丸山一典・西野純一・天野力・松原浩・山田明文・小林高臣 共著 (2000) 朝倉書店

「ブラディー般化学(上)」、「ブラディー般化学(下)」 J.E.Brady・G.E.Humiston 共著、若山信行・一国雅 巳・大島泰郎 共訳(1991)東京化学同人

「ベッカー 一般化学(上)」、「ベッカー 一般化学(下)」 R.S.Becker・W.E.Wentworth 共著、木下實・安部明 廣·大島泰郎 共訳(1983) 東京化学同人

【成績の評価方法と評価項目】

1.成績評価

実験(25%)、実験報告書(50%)、演習(25%)により評価する。

2.評価項目

- (1)該当する実験内容の適切な理解と実験計画書の作成
- (2)化学薬品および実験器具の取り扱いの実施と習得
- (3) 実験遂行中に起こる状況変化に対する適切な対応
- (4)得られた実験結果の適切なまとめと口頭での報告
- (5)実験目的、実験内容、実験結果を適切なグラフ、表などを用いてまとめ、考察を加えた報告書
- (6)演習における小テスト

【留意事項】

実験の服装としては、室内履(運動靴でよい)、白衣を着用する。レポートは1週間以内に提出する。

演習及 2単位 2学期

Biological Laboratory and Exercise

【担当教員】

福田 雅夫

【教員室または連絡先】

生物棟354室

【授業目的及び達成目標】

生物を扱う機会の少ない工学部の学生が生物機能工学を含む生物に関連した分野に関わる可能性を考慮 し、実際に生物や生体の組織・成分を取り扱うことにより生物に関わる理解を深めるとともに実験の方法や技術並びに実験結果の取り扱い〜結果の解釈と考察のしかたを習得する。また生物学に関わる英語の記述に慣れる。生物を扱う実験を具体的なイメージを持って理解し考察できることと、生物学に関わる基礎的な記述 を辞書を用いながら独力で読解できることを目標とする。

【授業キーワード】

生物学、実験、演習、顕微鏡、色素体、核、細胞質、細胞分裂、浸透圧、微生物、筋、植物体、酵素反応

【授業内容及び授業方法】

以下にあげる項目に関する実験を行い、細胞の成分、構造、機能を中心に、多細胞生物体の分化した細胞 が構成する組織や器官と機能の関係ならびに生体内の化学反応について学ぶ。演習では英語の学習をかねて英語のテキストを用いて生物学の基礎について学ぶ。

【授業項目】

- 1. 顕微鏡の原理と使用法
- 2. 色素体の観察
- 3. 核・核小体・細胞質の識別染色
- 4. 細胞分裂
- 5. 浸透圧と細胞 6. 微生物
- 7. 筋
- 8. 植物体の再生
- 9. 酵素反応

【教科書】

特に指定しない。実験指導書、演習教材テキストを配布する。

【成績の評価方法と評価項目】

出席とレポートの提出の有無により成績の7割を、レポートの内容で成績の3割を評価する。

【留意事項】

実験設備の都合により定員があるため、履修を断るケースがある。必修となっている生物系に配属された学 生と基礎自然科学選択となっている環境系に配属された学生は優先的に履修を認める。最初のガイダンス において履修者を決定するので、履修を希望する者は必ず出席すること。

一般工学概論 講義 2単位 1学期

Elementary Engineering

【担当教員】

宮田 保教・電気系全教員・植松 敬三・海野 隆哉・宮内 信之助・大里 有生

【教員室または連絡先】

機械建設1号棟402室(宮田), 分析計測センター209室(井上), 機械建設1号棟708室(海野) 生物1号棟556室(渡邉), 化学経営情報1号棟409室(大里)

【授業目的及び達成目標】

工学とは何か、人間社会におけるその役割は何か、工学一般について、また機械、電気、化学、建設・環境、生物、経営情報の各分野について認識する。

【授業キーワード】

機械創造工学、電気電子情報工学、材料開発工学、建設工学、環境システム工学、生物機能工学、経営情報システム工学、技術科学

【授業内容及び授業方法】

機械・電気・化学・建設・生物・経営情報の各系の代表として上記の教官が交替で2~3回の講義を行う。

【授業項目】

- 1. 序論
- 2. 機械創造工学
- 3. 電気電子情報工学
- 4. 材料開発工学
- 5. 建設工学
- 6. 環境システム工学
- 7. 生物機能工学
- 8. 経営情報システム工学
- 9. 工学と技術科学

【教科書】

特になし。

【成績の評価方法と評価項目】

時々出席状況を調べるとともに、随時、簡単なテストを行って、認識の程度を調べ、その結果により評価する。

工業基礎数学I 講義 2単位 1学期

Engineering Mathematics 1

【担当教員】

小林 昇治

【教員室または連絡先】

環境システム棟268室

【授業目的及び達成目標】

工学各分野において必要となる応用数学の基本的な部分を講義する。内容は複素関数論の初歩。

【授業内容及び授業方法】

基本的な重要事項を解説し、例題の模範解答を与える。教科書以外の話題や例題を扱うこともある。複素数の概念をきちんと導入し、実数と複素数の違いを理解させる。物理学や工学への応用についても触れる。

【授業項目】

- 1) 複素数
- 2) 複素平面
- 3) 複素関数
- 4)正則関数
- 5)コーシーリーマンの方程式6)調和関数
- 7)コーシーの積分定理 8)特異点と極
- 9) 留数定理とその応用

【教科書】

標準的な応用数学の教科書を使用する。

【成績の評価方法と評価項目】

原則として学期中に2回の試験を行う。評価基準はほぼ50%づつ。

【留意事項】

数学IA, IIA, IB, IIB, 数学演習I, IIを履修していることが望ましい。

Biology 2

【担当教員】

山元 皓二•福本 一朗

【教員室または連絡先】

生物1号棟556室(山元), 生物1号棟654室(福本)

【授業目的及び達成目標】

生命現象は今や化学や物理学との連携の下で解明され始めている。生物機能工学課程における講義も 境界領域に属するものが多い。しかし、境界領域に踏み込む前に、生物について十分に知っておくことが重

本講義においては、動物(特に人間)と植物の形態と機能について広い視野から理解することを目的とする

【授業キーワード】

動植物の形態・機能、筋学、骨学、関節学、神経筋相関、人体の構造と機能、植物の発生、植物の進化

【授業内容及び授業方法】

第1部では、動物の細胞に始まり、特に人間のからだの基本構造と機能のうち骨学・筋学について解説する。授業はオーバーヘッド・プロジェクターとビデオを用いて可能なかぎり視覚的に行う。

第2部では、植物の細胞に始まり、植物のからだを組織や器官のレベルで解説する。図を多用し、視覚に

第3部では、からだはいかにして発生するのか、発生の過程はどのように多様化しているかを解説する。図 を多用し、視覚に訴える。

【授業項目】

第1部 動物体の構造と機能

- 1. 人体の構造総論
- 2. 人体機能学
- 3. 骨学 4. 筋学
- 5. 関節学
- 6. 神経筋相関学

第2部 植物体の構造と機能

- 1. 植物の基本構造
- 2. 栄養器官
- 3. 生殖器官

第3部 植物の個体発生と系統発生

- 1. 植物の生殖と発生
- 2. 植物の多様性と進化

【教科書】

佐藤達夫:「解剖生理学」、医歯薬出版 (福本) 予習を欠かさないこと

【参考書】

Feneis:「図解解剖生理学」、医学書院(福本) 必要に応じて紹介する。(山元)

【成績の評価方法と評価項目】

第1部:講義期間中に骨学と筋学の2回の Dugga (小試験)を行う。その全てに合格したもののみ最終試験を受ける資格が与えられる。最終成績は、Dugga と最終試験の総合成績により評価する。 第2、3部:講義期間中に3回の演習(宿題)を課す。演習および最終試験の成績で評価する。

福本が第1部を、山元が第2、3部を担当する。それぞれで所定の評価を得て初めて単位を取得できる。 当科目は生物機能工学課程4年生の選択科目「解剖生理学」、「遺伝育種学」に接続している。

Engineering Mathematics 2

【担当教員】

原 信一郎

【教員室または連絡先】

環境システム棟267室

【授業目的及び達成目標】

工業基礎数学Iに引き続き、工学各分野において必要となる応用数学の基本的な部分を講義する。内容は、微分方程式、フーリエ級数、ラプラス変換等の初歩。

【授業キーワード】

数学、解析学、微分方程式

【授業内容及び授業方法】

様々な物理現象に現れる微分方程式を紹介し、基本的な分類、それぞれに対する解法を解説する。また、フーリエ級数およびラプラス変換を、微分方程式の解法の手段として用い、更にその応用を紹介する。

【授業項目】

- 第1週 物理現象における微分方程式
- 第 2週 1階微分方程式と求積法
- 第 3週 完全微分形と積分因子
- 高階定数係数線形微分方程式 第 4週
- 第 5週 逆演算子法
- 第6週 偏微分方程式
- 第7週 波動方程式
- 第8週 フーリエ級数
- 第 8週 ノーリエ級級 第 9週 複素フーリエ級数 第10週 フーリエ級数の収束 第11週 フーリエ級数の応用
- 第12週 フーリエ変換

- 第12週 / ラー及映 第13週 ラプラス変換 第14週 ラプラス逆変換 第15週 ラプラス変換の応用

【教科書】

工業基礎数学Iと同じ教科書を使用する。

【成績の評価方法と評価項目】

学期末に試験を行う。評価は、(1)1階微分方程式、(2)定数係数微分方程式、(3)逆演算子法による微分方程 式の解法、(4)基本的な偏微分方程式、(5)フーリエ級数展開、(6)フーリエ変換、(7)ラプラス変換による微分方程式の解法、などの項目が理解できいるかを見る。

数学IA、IIA、IB、IIB、数学演習I、II、工業基礎数学Iを履修していることが望ましい。

【参照ホームページアドレス】

http://blade.nagaokaut.ac.jp/~hara/ 授業関連ページ

講義 2単位 1学期

Information Processing

【担当教員】

湯川 高志

【教員室または連絡先】

居室: 電気1号棟6階606室, 内線9532, E-mail: yukawa@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

授業目的

コンピュータを用いてデータや情報を処理する際に必要となる, ハードウェア, ソフトウェア, ネットワークの基 礎知識を習得する. コンピュータを構成するハードウェアに関しては、コンピュータの構成と論理回路につい ての基礎的な知識を学ぶ、ソフトウェアに関しては、プログラミングとは何か、アルゴリズムとは何かを理解し、 2進表現、プログラミング言語、ソフトウェア工学、人工知能に関する基礎的な知識を身につける. さらに、コン ピュータネットワークとプロトコル階層の概念を理解する. 本科目は電気電子情報工学課程教育目標の(3)に

達成目標

- ・コンピュータの構成要素を説明できること.
- ・2進数の概念を理解し、2進表記と10進表記、16進表記との相互変換ができること・簡単な組合せ論理回路の動作を理解し説明できること
- ・プログラミング言語とコンパイラおよびインタプリタの概念を理解し、説明ができること
- ・繰り返しの概念を理解し、繰り返しを用いたプログラムの基本設計ができること・サブルーチンの概念を理解し、トップダウンアプローチによるプログラムの基本設計ができること・・再帰の概念を理解し、再帰的なプログラムの基本設計ができること・・
- ・計算時間のクラス(P, NP)について理解し説明できること
- ・コンピュータネットワークにおけるプロトコル階層の概念を理解し説明できること。

【授業キーワード】

電子計算機, コンピュータ, 情報処理, プログラミング, アルゴリズム, プログラミング言語, 論理回路, アーキ テクチャ

【授業内容及び授業方法】

教科書および補助資料に沿って, コンピュータのハードウェアとソフトウェアについての基礎を概説する. 必 要に応じて小テストを行い, 宿題(レポート)を課す

【授業項目】

- 1. コンピュータとコンピュータ科学
- 2. コンピュータの構成要素とアーキテクチャ
- 3.2進法
- 4. 論理回路
- 5. プログラムとプログラミング言語
- 6. 言語処理プロセッサ 7. 中間試験
- 8. アルゴリズムとプログラムの設計(1)
- 9. アルゴリズムとプログラムの設計(2)
- 10. トップダウンプログラミング
- 11. オブジェクト指向プログラミング
- 12. プログラムの実行時間
- 13. ネットワークとプロトコル
- 14. 人工知能
- 15. 期末試験

【教科書】

「情報科学入門」坂和正敏, 矢野 均, 西崎一郎著 朝倉書店

【参考書】

「やさしいコンピュータ科学」Alan W. Biermann著 和田英一監訳 アスキー出版局 「情報科学基礎論」岡田稔, 三輪和久共著朝倉書店

「痛快!コンピュータ学」坂村健著 集英社インターナショナル

【成績の評価方法と評価項目】

期末および中間テスト(60%)、宿題レポート(合計40%)を総合して評価する. その結果が40点以上59点以下の 者に対しては追試を行う. 追試で60点以上の得点があれば, 60点として単位を認定する. テストやレポートで は、達成目標に記した各項目について記述解答形式の問題や課題を出す.

【留意事項】

電気系で「基礎情報処理演習」(2年2学期),「ディジタル電子回路」(2年2学期)の履修を希望する学生は,本 科目を履修しておくことが望ましい.

工学基礎実験 実験 2単位 1学期

Basic Engineering in Experiment

【担当教員】

機械系·電気系·化学系全教員

【授業目的及び達成目標】

I. 機械系項目

機械部品に使用される材料の特性、材料の加工、加工結果、機械の特性などを計測し、体験することにより ,機械の基本内容を具体的に理解する。

II. 電気系項目

電圧・電流・インピーダンスなどの計測をすることにより、電気・電子工学において必須な計測技術に習熟す さらに、安全、環境、倫理について考える力を身につける。本科目は、教育目標(1)、(2)、(5)、(8)に寄与する

III. 化学系項目

材料開発に関係する基礎技術としてのパーソナルコンピュータの使用、および基礎的な化学工学に関する 実験等を行う

化学工学実験では簡単な操作の実験を行い、熱伝導、蒸留、粉体の性質など化学工学的な考え方を経験 することを目的とする。

【授業内容及び授業方法】

- I. 機械系項目
- 1) 実験前に行われる講義により、知識を深める. 2) 各実験班に分かれ、実験を行う. 3) 実験考究により、内 容を再確認する. 4)レポートを指導教官に提出する.

各実験班に分かれ、各実験指導教官の指示により各実験項目を2回で実施する レポートは、2回目の実験日の1週間後までに、必ず、各指導教官の指定する場所に提出する。

III. 化学系項目

計算機を用いた実験は2人1組になって行い、化学工学実験は3班に分けて行う予定である。次の実験が始 まるまでに、レポートの提出を義務付ける。

【授業項目】

- I. 機械系項目
- 1. フェイスジャッキの製作(もしくは英語ゼミ)。フェイスジャッキの製作では、非常勤講師による工作機械全 般およびNC技術に関する実学的座学も行う。
- 2. 抗力係数の測定
- 3. トレースロボットの制御
- 4. 機械加工部品の精度評価
- 5. 引張試験
- II. 電気系項目
- 1. 抵抗の測定I
- 2. 抵抗の測定II
- 3. LCの測定、共振回路
- 4. 単相電力量の測定
- 5. 半導体の特性実験
- 6. オシロスコープによる波形観測
- III. 化学系項目
- 1.パーソナルコンピュータを用いた計算機実験:
- 2.化学工学実験 1)酸解離定数の決定
- 2)蒸気管からの熱損失
- 3) 単蒸留
- 4)粉体粒子の充填

【教科書】

I. 機械系項目

テキスト「2年生 工学基礎実験 機械実験指導書」をガイダンスの時に販売する。

II. 電気系項目

「学生実験指導書 第2学年」をガイダンスにおいて販売する。

III. 化学系項目

化学系学生実験委員会が制作したプリントを用いる。

【成績の評価方法と評価項目】

1. 機械系項目

レポート評価の他、遅刻およびレポート提出の遅れについては厳しく減点する。欠席の場合は採点不可能となるので、事前(もしくは事後早急)に実験担当教官へ連絡すること

II.電気系項目

レポート評価の他、遅刻およびレポート提出の遅れについては厳しく減点する。 欠席の場合は事前(もしくは事後早急)に実験担当教官へ連絡し相談すること。

III. 化学系項目

レポート評価の他、欠席や遅刻およびレポート提出の遅れについては厳しく減点する。

【留意事項】

I. 機械系項目

授業項目1. に関して,機械系で工業高校機械科を卒業した学生は英語ゼミを受講する. その他の学生は,フェイスジャッキの製作を行う. 学期の初めにガイダンスを行い,グループ分け・実験の進め方,注意事項等を説明するので,必ず出席すること。

II. 電気系項目

学期の第1回目の実験日にガイダンスを行い、実験の班割りおよび実験の進め方についての指示を行うので、必ず出席すること。

III. 化学系項目

学期のはじめにガイダンスを行い、また、実験の前に内容についての説明を行う。

※1 機械系および電気系の学生は項目IとII, 化学系の学生は項目IIとIII, 生物系の学生は項目IIのみを受講する。(生物機能工学課程は1単位となる。)

※2 実験第一週目に、報告書作成についての講義がある。

機械設計製図 実習 1単位 2学期

Mechanical Drawing

【担当教員】

阿部 雅二朗 ほか

【教員室または連絡先】

機械建設1号棟504室(阿部)

【授業目的及び達成目標】

機械要素、装置を対象として、基本仕様を定めた設計課題について機能計算、強度計算および製図の実習を行う。これにより、機械設計および製図の基礎力を修得する。

【授業キーワード】

機械要素、機械装置、機械設計、製図、JIS、ISO、限界状態設計法、強度設計、機能設計

【授業内容及び授業方法】

機械設計および製図の基礎についての講義を受けた後、個人別に基本仕様を定めた課題について設計 計算し、レポートを作成する。レポート内容をもとに製図を行う。

【授業項目】

- 1.機械設計の手順
- (1)概要
- (2)生産計画 (3)基本•詳細設計
- (4)機能計算
- (5)許容応力設計法 (6)限界状態設計法
- (7)工作図
- (8)経済設計
- 2. モータサイクル用トランスミッションの設計
- (1)動力伝達機構
- (2)トランスミッション
- (3)設計仕様
- (4)機能計算
- (5)基本計画図
- (6)強度計算
- (7)工作図の作成

【教科書】

「基礎からのマシンデザイン」伊藤廣編著、森北出版

【参考書】

「機械の設計考え方・解き方」須藤亘啓著、東京電機大学出版

【成績の評価方法と評価項目】

提出された設計レポートと図面により評価する。評価項目は、(1)主要機械要素・装置の基礎的な機能およ び強度計算能力(2)設計計算結果等をJIS機械製図規則に従って図面化する能力である。

【留意事項】

工業高校で設計を学んでいる場合を除いて、選択科目「設計製図」の単位を取得していることが必要である

(授業系統図) 機械要素 設計製図--機械設計製図

実験 1単位 2学期

Fundamental Mechanical Engineering Work

【担当教員】

機械系全教員

【教員室または連絡先】

実験総括 金子 覚、機械建設1号棟605室 2年担当 宮下幸雄、機械建設2号棟577室

【授業目的及び達成目標】

工学基礎実験に続いて,機械創造工学課程の学生を対象として行われる.機械工学に関する基礎的な実験を行い,機械工学の内容理解をより深めるとともに,得られた結果の解析・考察能力を養成する.

【授業内容及び授業方法】

- 1) 実験前に各実験に関する講義が行われる.
- 2)グループに分かれ、各実験指導教官の指導の下で各実験項目を実施する.
- 3) 実験終了後, 複数の班で集合して実験考究を行う.
- 4)レポートを指導教官に提出する。

【授業項目】

下記の項目について、スケジュールに従って実験を進める.

- 1. 飽和蒸気圧力の測定
- 2. 渦巻ポンプの性能試験
- 3. インボリュート歯形の創成と精度検査 4. オペアンプの基礎
- 5. A/D-D/A変換
- 6. 真空度とコンダクタンス
- 7. 鋼の熱処理
- 8. 硬さ試験

【教科書】

2年1学期に購入した「2年生 工学基礎実験 機械実験指導書」の後半部を使用する。

【成績の評価方法と評価項目】

出席、実験の態度、報告書により評価する。

【留意事項】

学期の初めにガイダンスを行い、グループ分け・実験の進め方、注意事項等を説明するので、必ず出席すること.

レポートの評価の他、遅刻およびレポート提出の遅れについては厳しく減点する. また、欠席の場合には単 位取得不可能となる場合もあるので、事前(もしくは事後早急)に、実験担当教官まで連絡すること

Fundamental Information Processing Exercise 1

【担当教員】

古口 日出男 ほか

【教員室または連絡先】

機械建設1号棟607室(古口)

【授業目的及び達成目標】

- 1. 授業目的
- ・機械技術者の素養としての情報処理の基礎を学習する。情報化社会のメディアとしてのコンピュータに関 心を持ち、さらに高度な情報処理技術を習得できる素養を養う。
- 2. 達成目標
- ・情報リテラシーとしての文書作成、プレゼンテーション、情報ネットワーク社会の倫理感を身につける。
- ・コンピュータを利用して工学の基礎的問題を解くための基礎知識を身につける。

【授業キーワード】

情報リテラシー、プレゼンテーション技術、ネットワーク倫理、プログラミング言語

【授業内容及び授業方法】

パソコンを用いた文書作成、表計算、インターネットの使い方、プレゼンテーションの作成、C言語による簡単なプログラミングの演習を行う。また、情報ネットワークを使う上での倫理について解説し、考える。授業は一人一台のパソコンを用いた演習形式で進める。

【授業項目】

第一週 パソコン操作の基礎、 第八週 スライド作成

インターネット基礎、 第九週 電子メール、ネチケット

- 第二週 パソコン操作の基礎、第十週 UNIXの基礎 第三週 ワードの基本操作、 第十一週 C言語の基 第四週 文書編集、表作成、 第十二週 C言語の基 第十一週 C言語の基礎(その1) 第十二週 C言語の基礎(その2) 第十三週 C言語の基礎(その3)
- 第五週 Excelの基本操作、
- 第十四週 C言語の基礎(その4) 第六週 表計算、グラフ、
- 第七週 プレゼンテーション、第十五週 定期試験

【教科書】

- 1.「パソコンの実践学習 Windows/Office2000」杉江日出澄、吉田郁子共著、培風館
- 2.「学生のためのC」内山章夫、河野吉伸、津村栄一、中村隆一共著、東京電機大学出版局

【参考書】

「ビギナーズ情報リテラシ」成蹊大学情報処理センター、昭晃堂

【成績の評価方法と評価項目】

- 1. 成績評価
- ・レポート50%、定期試験50%の割合で成績を評価する。
- ・2~3回のレポート提出。
- ・定期試験では、参考書、参考資料、ノートの持ち込みは不可。
- ・授業開始後20分までは遅刻、それ以後の入室は欠席とする。最終成績は総欠席回数を成績から減じたも のとする。
- 2. 評価事項
- 読み手の立場に立った分かりやすいレポートを書くことができるか。
- ・表を使った計算ができ、その結果を適切なグラフにまとめることができるか。・実験結果、計算結果を順番やレイアウトを考えて、インパクトのあるプレゼンテーションのスライドを創ること ができるか。
- ・ネットワーク利用上の倫理を理解しているか。
- ・C言語で四則演算を使ったプログラムを自分で作ることができるか。
- ・C言語で繰り返し及び条件判断のプログラムを自分で作ることができるか。

【留意事項】

- 1. シラバスに記載された授業項目に従い、授業の予習、宿題を行い、各自の学習目標を達成すること。 2. 授業時間以外の質問は、電子メールで受け付ける。アドレスは、ホームページで知らせる。
- 3. 関連科目「基礎情報処理演習I (2年2学期)、情報処理考究及び演習I、II (3年2学期、4年1学期)

【参照ホームページアドレス】

http://multi2.nagaokaut.ac.jp

長岡技術科学大学機械系マルチメディア教育ホームページ

基礎情報処理演習Ⅱ

演習 1単位 2学期

Fundamental Information Processing Exercise 2

【担当教員】

永澤茂 ほか

【教員室または連絡先】

機械建設1号棟301室(永澤)

【授業目的及び達成目標】

1学期開講の基礎情報処理演習Iに引き続き、機械技術者の素養として計算機を使ったデータ処理の基礎を学習する。特に計算機のネットワーク環境における基礎的な編集操作の知識を身につける。また、プログラミング言語 C による逐次処理、繰返し、条件分岐の基礎構文を自主的に利用できる素養を身につける等、大 学生活において基盤となるデータ処理技術の達成目標を示す。さらにパスワードの管理等、最低限度の安 全保護と責任についての知識を養う。

【授業キーワード】

C言語、逐次処理、繰返し、条件分岐、ファイルの管理、UNIX コマンド、プロセス、vi エディタ、ネットワーク の安全性

【授業内容及び授業方法】

Windows環境の計算機からUNIX環境の計算機を telnet ならびに ftp 等を利用してUNIXコマンドの操作、フ アイル転送等の演習を行う。併せてパスワードの管理の重要性やファイルの読み書き権利について理解を深 める。C言語のプログラムを編集する演習を通して、プロセスの実行と管理について解説する。C言語の基本的用法として、基本変数の型、繰返し増分、標準ヘッダーファイル、数学関数ライブラリのリンク、桁落ち、書式指定、主要なASCIIコード、標準入出力、算術代入処理前後の変数の状態変化等を焦点とし、演習形式で進める。また、流れ図によるデータの型手続きの表現を用いてアナイブ・ミングの理解を深める。 授業では、各人一台のWindows環境の計算機端末を用いて演習を行う。授業時間内に講義と演習ならびに

質疑応答を行って進める。

1. telnetの基礎とファイルのviによる編集(1回)

1学期の基礎情報処理演習Iの最低限の復習をして、自主的に作業を進められるように指導する。Windows 環境からUNIX環境へのログイン、ログアウトを教える。パスワードの重要性を教える。viによる文字データの 入力と保存等について教える。 2. ディレクトリとファイルの編集操作(3回)

UNIXのファイル構造について説明する。編集するファイルをサブディレクトリを作って個人毎に管理する方 法を理解し使いこなせるよう教える。個人の使用可能なディスク容量制限、3種類の読み書き実行権利、移動/削除、複製、リンクファイルの作成等を演習を通して教える。ftpによってWindows環境へ転送する手順を教える。C言語による初歩的なプログラムの構文を講義して、viによるC言語プログラムの入力法と、コンパイラccによるコンパイルと a.outの実行法を教える。

- 3. C言語によるプログラムの設計初歩(8回)
- 3.1 逐次処理の構文、算術代入文における変数の状態変化、変数の型と桁落ちfloat/double/int、標準入出 力 scanf/printf 等について説明し演習を行う。さらに数学関数 sin()、acs()等の利用法を説明し演習を行う。(3回)
- 3.2 条件分岐 if/then/else、switch、条件式について説明し演習を行う。(2回)
- 3.3 繰返し for、while について説明し演習を行う。演習を通して psコマンドとkillコマンドの用法を教える。(2
- 3.4 ファイルの読み出しと書込み fopen、fclose、fprintf、fscanf 等について説明し演習を行う。(1回)

4. 流れ図を用いたプログラムの設計初歩(2回) 問題の分析と変数の設定、変数の状態遷移等について説明し、基本構文に沿った流れ図の書法を教える。 パワーポイントを用いて事例を流れ図に置換えて記述する演習を行う。

【教科書】

「UNIX環境の概要とC言語による初等プログラミング技術」: 永澤、電子教材「学生のためのC」: 内山、河野、津村、中村、長谷川、東京電機大学出版局

【参考書】

「C言語入門」(改訂3版): L.Hancock, M.Krieger、アスキー出版 「UNIXプログラミング環境」: Brian W.Kernighan, Rob Pike、アスキー出版

【成績の評価方法と評価項目】

実技試験 50%

期末試験 40%

学習態度 10%

- 1. 実技試験については、講義、予習、宿題を組合わせて出題するものとし、演習中に予告と指示をする。制 限時間内の解答可否で判断し、参加者全員に模範解答を教える。試験中は、手書きのノートの閲覧を許可する。但し配布資料や書籍類の閲覧と学生同士の対話を禁止とする。 Minute Paper と共に小試験を実施 する。 2. 期末試験については、資料の持ち込み禁止とする。電卓類は不要。
- 3. 学習態度については、授業開始後20分までの遅刻を欠席とみなす。遅刻回数は0.5点,欠席回数は1点 の減点として, 最終の総合成績から減する。

【留意事項】

- 1. 受講者の具備する条件:本教科を履修するには、1学期の基礎情報処理演習Iの科目を履修していること
- 。 2. 講義の初回に本講義の学習課題計画表を配布する。これに記述された授業の予習、宿題を行い、各自の理解を深めることが肝要である。
- 3. 理解困難な事項、不明な点がある場合、授業で質問すること。授業時間以外の質問を随時受付けるが、配布資料で示された電子メイルの宛先に質問を送付してもよい。
- 4. 関連科目

本科目に関連する科目を以下に挙げる。

基礎情報処理演習I(2年1学期)、情報処理考究及び演習I(3年2学期)、情報処理考究及び演習II(4年1学期)

何れも必修科目である。本科目を履修することによって、特に3年、4年の科目を有利に受講できるように努めることが肝要である。

【参照ホームページアドレス】

http://multi2/~snaga/ 機械系情報教材サーバ 設計製図 実習 1単位 1学期

Design Drawing

【担当教員】

阿部 雅二朗 ほか

【教員室または連絡先】

機械建設1号棟504室(阿部)

【授業目的及び達成目標】

工業製品の工作図である部品図、組立図などが理解できる基礎能力を養うとともに、JIS機械製図に従って独自に製図ができる技術を習得する。

【授業キーワード】

機械製図、JIS、部品図、組立図、機械要素

【授業内容及び授業方法】

JIS機械製図の講義と製図実習を行う。代表的な機械要素の例題についてドラフタを使用して製図する。

【授業項目】

- 1. 図面、JIS、投影法
- 2. 文字、線、寸法記入、尺度
- 3. 公差、仕上げ
- 4. 図面の構成、部品図、組立図、図番
- 5. 製図の手順
- 6. ねじの製図
- 7. 軸及び軸固定要素の製図
- 8. 軸継手の製図
- 9. 軸受の製図
- 10. 歯車の製図
- 11. ばねの製図
- 12. 溶接部の製図

【教科書】

「基礎からのマシンデザイン」、伊藤廣編著、森北出版

【参考書】

「JIS機械製図」、吉沢武編、森北出版

【成績の評価方法と評価項目】

提出された図面および講義の内容に関する期末テストにより評価する。評価項目は、JIS機械製図規則に基づく基本的製図能力およびJIS機械製図に関する基礎知識である。

【留意事項】

選択科目であるが、2学期の必修科目「機械設計製図」の単位を取得するには、「設計製図」を修得することが望ましい。工業高校で製図を学んだものはこの限りではない。 (授業系統図)図学——」

------設計製図

Basic Electromagnetism

【担当教員】

末松 久幸・宮田 保教

【教員室または連絡先】

機械建設1号棟402室(宮田)

粒子棟203号室、電話9894、電子メールsuematsu@vos(末松)

【授業目的及び達成目標】

学際化に伴い電気を専門とする技術者でなくとも電磁気についての一定の素養が期待されている。本講義は、電気電子システム、電子機器工学課程以外の学生を対象に、電磁気学の基本法則を理解するとともに、電磁気学の基本的構造を把握させることにより、将来この分野の知識が必要となったとき、自己学習が可能となるようにすることを目的に開講する。

【授業キーワード】

電荷、静電界、電流、静磁界、電磁誘導、電磁波

【授業内容及び授業方法】

電磁気学のさまざまな法則

- 1.クーロンの法則、
- 2.アンペールの法則、
- 3.電磁誘導(ファラディ)の法則、
- 4.ビオ・サバールの法則

などについて説明し、電荷、静電界、電流、静磁界の概念を理解し、これらの法則は、マックスウェルの方程式として整理されていくことを、講義および演習を通じて理解させる。この発展として

- 5.電磁波
- も取り扱えることを説明する。
- 講義内容を理解できるよう、必要に応じてベクトル演算についても演習を行う。

【授業項目】

- 1.電荷、クーロンの法則
- 2.静電場、コンデンサー
- 3.電流、オームの法則
- 4.アンペールの法則、静磁場
- 5.ファラディの法則、電磁誘導
- 6.自己誘導、コイル
- 7.簡単な回路
- 8.マックスウェルの方程式
- 9.マックスウェルの方程式の解と特徴
- 10.電磁波
- なお、内容の理解を深めるため必要に応じ、演習を行う。

【教科書】

プリントを配布し、それをもとに講義する。

【参考書】

基礎物理学シリーズ「電磁気学」 永田 一清 東京教学社

【成績の評価方法と評価項目】

レポート, 出席, 期末試験等を総合して評価する。

【参照ホームページアドレス】

http://etigo.nagaokaut.ac.jp/suematsu/ 末松久幸のページ(偶数年度) 波動・振動 講義 2単位 2学期

Wave Mechanics and Vibrations

【担当教員】

宮田 保教・安井 寛治

【教員室または連絡先】

機械建設1号棟402室(宮田), 電気1号棟302室(安井)

【授業目的及び達成目標】

物理現象における波動・振動現象の理解とその取り扱いに習熟する。特に、波動現象、振動現象は専門分野にかかわらず現れる現象であるので、その運動に対する微分方程式を立てられ、解けるよう習熟することを目的とする。

【授業キーワード】

単振動、減衰振動、強制振動、弦を伝わる波、フーリエ解析、LC回路

【授業内容及び授業方法】

- 1.調和振動を発生する代表的な物理現象を微分方程式によって理解した後、力学的エネルギーの挙動に基づく一般的な自由振動を解析する基礎知識を修得する。
- 2.次に境界条件の変化による振動系のエネルギー変化の機構を取り上げる。
- 3.その後、強制的な加振力/加振変位による振動子の共振挙動、振動エネルギーの伝達特性について解析式を展開し、その意味を理解する。
- 4.さらに複数の連なる振動子における振動現象を学んで、その考え方を連続体を伝わる波動現象へ拡張していく
- 5.最後に波動方程式から導かれる波形解について学ぶ。

【授業項目】

- 下記の項目について講義すると共に、例題演習により習熟する。
- 1)振動とは何か。
- 2)調和振動の力学。
- 3)ポテンシャルエネルギーによる自由振動。
- 4)パラメータ振動。
- 5)強制振動。
- 6)連成振動。
- 7)波動方程式
- 8)波形の級数解析。

【教科書】

「振動と波動」藤原邦男著サイエンス社

【成績の評価方法と評価項目】

1.成績評価

講義中に幾度かの演習と小テスト(40%)を行なうほか、期末テスト(60%)を行なう。波動、振動現象の取り扱いに習熟することを目的とするので、演習への出席を重視する。

- 2.評価項目
- ・単振動の微分方程式の解法
- 単振動の基本的性質の物理的理解
- ・パラメータ振動、強制振動、連成振動の解法
- 上記振動の物理的理解
- ・波動方程式の導出法とその物理的意味
- •波形の級数解析法

【留意事項】

物理学I,数学IA,数学IB,数学IIA,数学IIBを履修しておくことが望ましい。

Descriptive Geometry

【担当教員】

高橋 修

【教員室または連絡先】

機械建設1号棟704室

【授業目的及び達成目標】

物体が有する幾何学的性質の研究は、その物体を平面的に描くことから始まる。本科目の目的は、工学の 基礎である立体の認識力を深め、理解力を養うことであり、本科目を学習することによって、立体を取り扱う幾何学的方法の基礎知識およびそのための技術を身につける。

また本科目の教育目標は、自然科学の基礎知識、素養を身につけることである。すなわち、工学の基礎とな る数学、物理、化学および情報技術に関する基礎知識とそれらを応用できる能力を習得することである。

【授業キーワード】

立体, 平面図法, 投影法, 回転法, 切断法, 投射法

【授業内容及び授業方法】

立体の解析手法と表現方法を実例を用いて講述するとともに、各自で演習問題を解くことにより、その解析手法の認識と応用的な課題に対処する能力を身につける. 授業は教科書に基づいて行うが、板書とOHPも併用して講述する. 授業中および授業外において多くの演習問題の解答と成果の提出を課すものとし、適 当な時期に中間試験と期末試験を授業中に実施する.

【授業項目】

- 第1週 図学とは何か,図学と工学の関係,平面図法 第2週 立体の表現法
- 第 3週 副投影図
- 第 4调 直線実長視
- 直線点視 第 5週
- 第6週 平面直線点視
- 第7週 平面実形視
- 第8週 中間試験
- 第 9週 回転法
- 第10週 切断法
- 第11週 切断法の応用
- 第12週 投射法
- 第13週 陰影
- 第14週 曲面, 展開図
- 第15週 期末試験

【教科書】

「基礎図学」磯田浩著,理工学社

【参考書】

「図学問題演習」幸田 彰・森田 釣 共著, オーム社

【成績の評価方法と評価項目】

授業および授業外での演習課題40%,中間および期末試験60%の比率で成績の評価を行う. 演習課題は実際に独力で描画することが主であり、描画方法が正確であること、および作図の精度が高く鮮明であることを評価する.中間および期末試験は図学における基礎知識を問うことが主であり、主要知識を 確実に理解して身につけているかどうかを確認して評価する.

【留意事項】

- 1.本科目は工学の基礎科目の一つであり、設計製図等の科目と関連している.
- 2.定規、コンパス等の製図用具を授業の内外で使用することになる.

工業力学 講義 2単位 1学期

Engineering Mechanics

【担当教員】

上村 靖司

【教員室または連絡先】

機械建設1号407棟室

【授業目的及び達成目標】

身近な力学系に関する種々の現象について、それを支配する原理の概念を理解した上で、具体的問題に対して適切なモデルを構成し解くことができる能力を修得させることを目的とする。具体的達成目標は次の通りである。

(1)力のつりあい式あるいは運動方程式をたて解くことができること, (2)重心,分布力,慣性モーメントなど,積分の式を立て解くことができること, (3)エネルギー・仕事の概念を理解し,その保存式を立てて問題を解くことができること。

【授業キーワード】

力の釣り合い,分布力,重心,質点系の力学,剛体の力学,仕事・エネルギー,摩擦

【授業内容及び授業方法】

下記項目に沿って演習問題に重点を置き講述する。

【授業項目】

- 1. 平面内の力のつりあい
- 2. 立体的な力のつりあい
- 3. 分布力と重心
- 4. 運動学
- 5. 質点の動力学
- 6. 剛体の力学
- 7. 仕事とエネルギー
- 8. 摩擦

【教科書】

「詳細工業力学」入江敏博著 理工学社

【参考書】

「仕事に役立つ微分・積分」伊澤・上村・黒須・高島・増淵・三田著 パワー社

【成績の評価方法と評価項目】

基本的に中間テストと期末テストで評価する。演習を重視することから、授業態度・出席の状況を若干加味する(5%程度)。

水力学 講義 2単位 1学期

Elementary Fluid Mechanics

【担当教員】

白樫 正高•高橋 勉

【教員室または連絡先】

機械建設1号棟603室(白樫)、機械建設1号棟601室(高橋)

【授業目的及び達成目標】

水・空気等の流動現象ならびに実用の流体計測機器・流体機械の機能を、比較的簡単な物理法則及び数 学的手法を用いて理解する。

【授業キーワード】

連続の式・運動方程式・エネルギー式・相似則・損失と抵抗

【授業内容及び授業方法】

前半では静水力学に重点を置いて、流体の粘性、表面張力、静止流体の圧力、圧力の測定、浮力等について講述する。後半では理想流体の諸定理、粘性流体の流れと管摩擦に重点をおいて、ベルヌーイの定理 、運動量理論、管路内の流れ等について講述する。毎週、講義の最後に演習問題を行う。

【授業項目】

1. 流体の性質とその力学的取り扱い方 連続体の取り扱い、流体の種類、ニュートンの粘性法則

2. 流体の静力学

水深と圧力の関係、圧力の等方性、パスカルの原理

3. 流れの一次元的取り扱い 定常流と非定常流、ベルヌーイの定理

4. 運動量の法則

運動量保存則の流れに対する適用、流れにより作用する力

5. 管路内の流れ

層流と乱流、圧力損失

6. 流れの相似則と次元解析 次元解析、レイノルズ数

【教科書】

「流体の力学」須藤浩三・長谷川富市・白樫正高著コロナ社

【成績の評価方法と評価項目】

(1)評価方法

2回の試験(中間・期末試験)(70%)、課題レポート(30%)を総合して評価する。

(2)評価項目

- 1. 連続体の概念を理解していること
- 2. 圧力の概念を理解し、容器内の圧力分布を評価できること 3. ベルヌーイの定理を理解し、流体力学的にエネルギー保存の法則を計算できること
- 4. 流体力学における運動量保存則を理解し、流れにより生じる力を計算できること 5. 管摩擦係数の概念を理解し、理想流体と実在流体の違いを考慮して流路の設計が出来ること 6. 無次元数の概念を理解し、流れ場の一般的取り扱いが出来ること

工業熱力学 講義 2単位 2学期

Engineering Thermodynamics

【担当教員】

鈴木 正太郎 · 門脇 敏

【教員室または連絡先】

機械建設1号棟604室(鈴木),機械建設1号棟502室(門脇)

【授業目的及び達成目標】

熱エネルギーと力学的エネルギー(仕事)とが関連する現象を熱力学の立場から基礎的に理解するとともに 、熱機関の基礎サイクルを通して熱力学の実践への応用を習得することを目的とする。

【授業キーワード】

状態量と状態変化, 熱力学の第一法則, 熱力学の第二法則, ガスサイクル, 蒸気サイクル

【授業内容及び授業方法】

熱力学の基礎的な取り扱いと熱機関(ガスサイクル、蒸気サイクル)への応用を並行させながら、熱力学の実 用的な捉え方を学習する。

【授業項目】

- 1. 序論(熱力学の基礎概念)(1回)
- 2. 熱力学の第一法則(2回)

- 3. 理想気体(状態式、状態変化)(2回) 4. 熱力学の第二法則(カルノーサイクル、エントロピー)(2回) 5. ガスサイクル(オットー・ディーゼル・サバテ等の各サイクル)(2回)
- 6. 蒸気の特性(2回)7. 蒸気サイクル(ランキンサイクル、再熱再生サイクル)(2回)
- 8. 冷凍サイクル(1回)

【教科書】

一色尚次他著「わかりやすい熱力学」森北出版

【参考書】

参考書は、谷下市松著「工業熱力学(基礎編)」裳華房など。

【成績の評価方法と評価項目】

成績評価の項目と配分は、中間試験4割、期末試験4割、レポート・出席2割とする。

材料力学I 講義 2単位 1学期

Strength of Materials 1

【担当教員】

栗田 政則

【教員室または連絡先】

機械建設1号棟507室

【授業目的及び達成目標】

機械設計に必要であるのみならず,機械工学や材料工学の基礎科目である材料力学の基礎理論を学ぶ. 外力によって物体に生ずる応力・ひずみおよび変形や材料の強度と剛性について修得する.

【授業キーワード】

弾性, 弾性変形, 応力, ひずみ, 材料の強度と剛性, 力学, 機械設計, ねじり, 曲げ, 応力解析

【授業内容及び授業方法】

材料の強度および剛性を評価するための材料力学の基礎理論をできるだけやさしく講義する. 講義の理解を深めるために, 重要な問題についてはレポートを提出させる.

【授業項目】

- 1. 応力とひずみ
- 2. フックの法則
- 3. 引張りと圧縮
- 4. 任意の方向の面に働く応力
- 5. ねじり
- 6. 真直ばりの曲げモーメントとせん断力
- 7. 真直ばりの応力
- 8. 真直ばりの変形

【教科書】

西村尚, 栗田政則・ほか著, ポイントを学ぶ材料力学, 例題で学ぶ材料力学, 丸善など.

【参考書】

西村尚, 栗田政則・ほか著, 例題で学ぶ材料力学, 丸善など.

【成績の評価方法と評価項目】

筆記試験

【留意事項】

材料力学の知識なしで機械設計をすることは不可能であるのみならず、この科目は機械工学や材料工学の基礎科目であるできるだけ多くの学生が履修することが望ましい.

材料力学II 講義 2単位 2学期

Strength of Materials 2

【担当教員】

井原 郁夫

【教員室または連絡先】

機械建設1号棟503室

【授業目的及び達成目標】

構造物や構造部材に引張り、曲げ、ねじりなどの負荷が作用するときの応力、ひずみおよび変形の解析法の 基礎を学習し、材料の力学挙動に関する基本的な考え方を身につけ、機械構造物の設計に関わる工学的センスを養う。この授業で得た知識は、弾塑性力学、固体力学、材料強度学、計算力学等を学ぶ基礎となる

【授業キーワード】

はり、軸、たわみ、ねじり、静定、不静定、弾性ひずみエネルギー、組合せ応力、材料強度、材料試験、力学 特性計測

【授業内容及び授業方法】

教科書に基づいて板書やプロジェクターによる平易な解説を行う。理解を深めるためにコンピュータによるデ モンストレーションを適宜行う。習熟度を高めるために講義の合間に小試験、演習を行い、時にレポートを課 す。

【授業項目】

第1週~第3週 イントロ、はりの静定問題

B.M.D.およびS.F.D.の描き方とその意味、応力およびたわみの計算式の導出、重ね合わせの原理

第4週~第6週 はりの不静定問題

不静定はりの応力とたわみ、弾性ひずみエネルギーの活用法

第7週 例題演習および質疑応答 第8週 中間試験

第9週 丸棒のねじり

トルクとせん断応力、動力伝達軸 第10週~第12週 多軸応力状態、2次元・3次元問題の基礎 応力成分、ひずみ成分、組合せ応力、主応力と主ひずみ、モール円 第13週~第14週 材料強度と評価

構造物の破損、材料の強度特性、各種試験法

第15週 定期試験

【教科書】

例題と演習で学ぶ材料力学 朝倉書店 必要に応じて資料を配布する

【参考書】

「ポイントを学ぶ材料力学」丸善など。

【成績の評価方法と評価項目】

成績評価

成績は出席状況、レポート、中間試験および定期試験により評価する。評価の目安は次のとおりである。 出席状況:10%

レポート:30%

中間および期末試験:60%

評価項目

- (1) 応力、ひずみの概念を理解していること
- (2)外力が作用するはりのたわみや応力を計算できること
- (3) 弾性エネルギーとその活用について理解していること
- (4)材料の力学的挙動の基礎を理解していること
- (5) 応力やひずみの測定法の基礎を理解していること

【留意事項】

受講者は1学期に開講されている材料力学」を履修していることが望ましい。

材料科学I 講義 2単位 1学期

Materials Science 1

【担当教員】

鎌土 重晴・佐藤 一則

【教員室または連絡先】

機械建設1号棟310室(鎌土), 環境システム棟466室(佐藤)

【授業目的及び達成目標】

機械系、生物系および環境系学生として必要な材料工学の基礎、特に材料の諸性質の変化を、原子あるい は結晶レベルから理解するために必要な基本的事項について学習する。

【授業キーワード】

原子構造、結晶構造、物質の構造、拡散、相変態、相律、状態図

【授業内容及び授業方法】

まず、材料の構造について学習し、次いで熱により結晶中で生じる変化として、拡散を中心にして析出、凝固および焼結過程を、さらに外力と熱により生じる変化として回復および再結晶について学ぶ。最後に温度、組成および圧力により決定される状態図について学習する。講義時間内に演習を適宜行う。講義理解のた めに宿題を課す場合もある。

【授業項目】

第1週 固体構造の基礎:原子構造、原子内の電子配置、自然界の数値取り扱い(SI単位系) 第2週~第4週 結晶性固体の構造:基本的概念、単位胞子、金属の結晶構造、密度計算、結晶系 第5週~第6週 結晶における方向と結晶面:結晶方向、結晶面の表わし方、最密結晶充填構造 第7週 結晶性粉と非結晶性材料:単結晶と多結晶、多結晶材料、非結晶性材料

第8週 定期試験

第9週~第10週 熱により結晶中で生じる変化:拡散、析出、凝固および焼結 第11週 外力と熱により生じる変化:回復および再結晶 第12週~第14週 相律、二元状態図の分類、実用合金系の状態図

第15週 定期試験

【教科書】

小原 嗣郎著、「金属材料概論」、朝倉書店

【成績の評価方法と評価項目】

成績評価は2回の定期試験、演習およびレポートにより行う。 定期試験60%、演習20%、レポート20%

【留意事項】

この教科は「材料科学II」、「材料基礎論」、「材料組織学」、「材料熱力学」の学習に接続・発展する。

材料科学Ⅱ 講義 2単位 2学期

Materials Science 2

【担当教員】

福澤康•南口誠

【教員室または連絡先】

機械建設1号棟401、309

【授業目的及び達成目標】

機械工学の基礎力として、材料学の養成を目的とする。特に機械構造物設計の材料選択に係わる基礎知識を身につけることを達成目標とする。

【授業キーワード】

各種材料の力学特性,変形、機械的強度、材料特性評価法

【授業内容及び授業方法】

内容:材料科学1で学習した内容を基礎として、材料の機械的特性に関わる変形挙動に関わる項目を講義する。

方法: 教科書及び配布するプリントを基に講義を行う。各講義項目の終了段階で、演習または課題により理解度を調べ、達成度評価を行う。また、講義中に質疑応答の時間を設け、その場での理解を深める。

【授業項目】

- ・材料の弾塑性挙動(3回)
- 転位論(3回)
- •材料特性評価法(2回)
- ・高温変形(2回)
- •耐食性(2回)
- ・定期試験及び演習(3回)

【教科書】

小原嗣朗著、金属材料概論(朝倉書店)

【成績の評価方法と評価項目】

演習. レポート40%、定期試験40%

【留意事項】

受講者は2年1学期に開講される「材料科学I」を取得しておくことが望ましい。 この教科は3年1月期に開講される「材料基礎論」の学習に継続される。 なお、この科目は学習・教育目標D、Hに相当する。 機構学 講義 2単位 1学期

Kinematics and Dynamics of Machines

【担当教員】

久曽神 煌

【教員室または連絡先】

機械建設1号棟606室

【授業目的及び達成目標】

機械各部の運動を幾何学的,力学的に解析する能力を養い,機械の基本設計に必要な素地をつくる.そのため,各種の機構を例に挙げ,各部の形状や組み合わせによって運動状態がどのようになるかを調べ,さらに希望する運動は,どのような機械要素をどのように組み合わせれば得られるかを理解させる

【授業キーワード】

機械要素と機構, 設計法

【授業内容及び授業方法】

講義を中心とし、小テスト・演習・宿題を課す。

【授業項目】

- 1、機械と機構
- 2、リンク機構の種類と運動
- 3、リンク機構の運動解析
- 4、摩擦伝動装置
- 5、巻掛け伝動装置
- 6、歯車機構
- 7、カム機構
- 8、平面機構の出力変位誤差

【教科書】

「よくわかる機構学」萩原芳彦 編著、オーム社

【成績の評価方法と評価項目】

1.評価方法

期末試験による。小テスト・宿題の成績も加味する。

- (1) 基本用語(対偶,機構の自由度,瞬間中心など)の説明ができること. (2) 4節リンク機構の分類,運動,応用例を示すことができること. (3) 歯車機構,カム機構における基本事項の説明ができること.

機械要素 講義 2単位 2学期

Element of Machines

【担当教員】

金子 覚・太田 浩之

【教員室または連絡先】

機械建設1号棟605室(金子),機械建設1号棟506室(太田)

【授業目的及び達成目標】

機械は種々の機械要素を組み合わせて目的の機能を実現している. そのため, 機械を設計するには機械要 素をよく理解し、その特性を十分発揮する使い方をしなければならない。ここでは、まず機械のしくみ、強度 設計・生産設計の基礎について学び、続いて代表的な機械要素(ねじ、軸系要素)の特性と設計への適用

【授業キーワード】

機械要素と機構,強度設計・生産設計の基礎,ねじ,軸系要素

【授業内容及び授業方法】

OHP, 実物などを用いながら, 設計の基礎, 代表的な機械要素の設計方法を講義する. また理解を深めるた めに、毎回の授業で演習や小テストを行い、さらに定期的に宿題(レポート)を課す。

【授業項目】

1. 設計の方法(1回)

機械のしくみ、設計の基礎、設計の手順、機械技術者の変遷とその役割

2. 強度設計の基礎(2.5回)

荷重の形式,破損の形態,応力集中,許容応力と安全率,静荷重の場合の強度計算(単軸応力,二軸応

3. 生産設計との関連事項(2回)

標準化, 規格化, 寸法公差, はめあい, 表面粗さ, 材料の選定

4. ねじ(4.5回)

ねじの基礎, ねじの用途と種類, ねじの力学, ねじの効率, 締付けトルク, 締付けボルト及び被締付け物に 作用する力, ねじの強度設計

5. 軸系要素:軸(3回)

軸の種類,軸設計上の留意点,トルクと動力,静力学に基づく軸の設計,動力学に基づく軸の設計

6. 軸系要素: 軸継手, キー(1回)

軸継手の種類と設計,キーの種類と設計

【教科書】

「機械要素概論」」林洋次監修, 実教出版 配布資料

【成績の評価方法と評価項目】

1.評価方法

定期テスト(60%), 課題レポート・小テスト(40%)を総合して評価する.

- 2.評価項目
 - (1) 機械のしくみを理解していること.
- (2) 代表的な機械要素(ねじ、軸系要素)の種類・用途を理解していること。 (3) 強度設計、生産設計に関するキーワード(例えば応力集中、許容応力、安全率、標準数、寸法公差など)を理解し、設計に活用することができる。
- (4) ねじに関する基礎から応用までの一通りの知識を習得していること. 例えば、ねじに作用する力、
- ねじ効率、締付けトルク、締付けボルトに作用する力などを計算できる. (5) 軸系要素を少なくとも静力学に基づいて設計できること. 例えば、曲げモーメントとねじりモーメ が同時に加わる場合の軸径を計算できる.

【留意事項】

受講者は「材料力学」」及び「材料力学」」」を履修していることが望ましい。

計測制御 講義 2単位 2学期

Instrumentation and Control

【担当教員】

柳 和久·明田川 正人

【教員室または連絡先】

機械建設1号棟404室(柳),機械建設1号棟508室(明田川)

【授業目的及び達成目標】

機械工学に関わる現象の把握や所定の機能を持つ機械の設計に必要な基礎的知識と学力を身につけさせることを目的とする。計測工学及び制御工学を本格的に学ぶための数理解析法を修得することが達成目標である。

【授業キーワード】

計測用語、センサ、フーリエ解析、ブロック線図、ラプラス変換、伝達関数、フィードバック制御、過渡応答、 周波数応答、安定性

【授業内容及び授業方法】

機械システムにおける計測と制御の関わりを理解し、それらの基礎概念を習得する。計測部門では重要な計測用語を中心にセンサと計測法の体系を学ぶ。制御部門では制御系の解析方法と特性評価法を学ぶ。さらに、制御系設計の基礎的考え方を学習する。

らに、制御系設計の基礎的考え方を学習する。 教科書と配布資料に基づいた講義形式とし、板書等により下記の授業項目に沿った内容の解説を行う。折に触れて演習問題を課し、解き方と模範解答を示す。

【授業項目】

- 1. 計測用語、センサと信号、計測法の体系
- 2. 自動制御の実際と基礎概念
- 3. 計測系と制御系解析の手法(フーリエ解析、ラプラス変換、伝達関数)
- 4. 過渡応答と周波数応答
- 5. 制御系の安定性評価
- 6. 制御系設計の基礎

【教科書】

やさしい機械制御,金子敏夫著,日刊工業新聞社

【参考書】

やさしく学べる制御工学 今井弘之ほか著、森北出版 自動制御の講義と演習,添田 喬,中溝高好共著,日新出版

【成績の評価方法と評価項目】

数回の演習リポートを課し、期末に試験を行う。成績の配分は、演習リポート40%、期末試験60%とする。

【留意事項】

数学I及び数学演習Iを履修してることを前提とする。複素数、複素関数の基礎知識を身につけていることが望ましい。

Metal Working

【担当教員】

田辺 郁男・鎌土 重晴

【教員室または連絡先】

工作センター204室(田辺),機械建設1号棟310室(鎌土)

【授業目的及び達成目標】

機械工学の初学者を対象として、機械を製作する基本的方法として用いられる金属加工法の概要を学習させる。各種加工法の基本原理と得失、相互の関係を修得し、金属加工法の全体像を把握することを目標と する。

【授業キーワード】

铸造、溶接、塑性加工、切削加工、研削加工、特殊加工、超精密加工

【授業内容及び授業方法】

教科書にそって, 鋳造, 溶接, 塑性加工、切削加工、研削加工、特殊加工、超精密加工の順序で内容を 教授する。ただし、教科書に含まれていない新技術についてはその都度、講義資料を配布する。また、担当 教官の経験,最近の技術動向等を随所に入れて,講義にふくらみを与える。 授業項目の区切り毎に小テスト、レポートを課す。

【授業項目】

1. 鋳造(金属溶解を含む)(3時間)

(1時間) 2. 溶接 3. 塑性加工 (2時間) (3時間) 4. 切削加工 (2時間) 5. 研削加工 6. 特殊加工 (2時間) 7. 超精密加工 (2時間)

【教科書】

「機械製作法(1)」:コロナ社、千々岩健児著 「機械製作法(2)」:コロナ社、竹中規雄著

【参考書】

講義の中で適宜示す。

【成績の評価方法と評価項目】

小テスト:35% レポート:50 % 出席点:15% (期末試験は行わない)

【留意事項】 1. 受講の条件: 特になし

講義及 3単位 2学期

Theory and Practice of Electromagnetism 1

【担当教員】

木村 宗弘

【教員室または連絡先】

電気1号棟607室

【授業目的及び達成目標】

授業目的:

電場の概念とその記述法さらにそれらの電気工学におけるコンデンサー、誘電体の基本的実際的意義を習得する。本科目を通じて、教育目標項目の(3)の達成に寄与する。

達成 目標:

マクスウェル方程式理解の初歩となるガウスの定理について物理的概念を会得する。電場についての基本的な演習問題が解けるようになる。

【授業キーワード】

静電誘導、電荷に働く力、クーロンの法則、ガウスの法則、電界の強さ、電位、 静電容量、誘電体

【授業内容及び授業方法】

電気磁気学発展の歴史的順序に従ってクーロンの法則にもとづいて静電気について学ぶ。つづいて"場"の立場からの考え方が、誘電体や導体などの問題を扱うのに役立つことを学ぶ。記述のための言葉としての数学(微分、積分、ベクトル解析の初歩)は必要に応じて学ぶ。毎回教科書章末の問題を演習することによって理解を深める。

【授業項目】

1. 電荷と電界(クーロンの法則、電界・電束・電東密度、ガウスの定理)2. 電位(電位の定義、電位の傾きとしての電界)3. 電荷分布と電界(電気双極子の電位と電界、球・平面等の帯電体における電位と電界)4. 静電容量(導体、静電容量の計算、イメージフォース)5. 誘電体(誘電体の分極、電界・電東密度の境界条件)6. 電流と抵抗(電流、電気抵抗とオームの法則、キルヒホッフの法則)

【教科書】

「基礎電磁気学 改訂版」電気学会編集 山口昌一郎著 オーム社

【成績の評価方法と評価項目】

授業毎の出席点および中間、期末試験の点数によって評価する。 (場合によっては演習の成績も加味される)

【留意事項】

受講者は「数学IA、IB、物理学I」を習得していることが望ましい。この学習は「電気磁気学及び演習II」の磁場、電磁波の学習に接続・発展する。

【参照ホームページアドレス】

http://www.alcllan.nagaokaut.ac.jp/~kimura/lecture/tpe1/index.html 電気磁気学及び演習I

Theory and Practice of Electromagnetism 2

【担当教員】

石黒 孝

【教員室または連絡先】

電気1号棟303教官室(内線9503, e-mail: ishiguro@vos)

【授業目的及び達成目標】

電場と磁場に関する基本的法則、即ち電束についてのガウスの法則、磁束についてのガウスの法則、アン ペアの周回積分の法則、ファラデーの電磁誘導の法則、そして変位電流の概念について数学的記述を行ない、マックスウェル方程式と言う形に表現されることを理解する。このマックスウェル方程式を真空に適応すると電磁波を記述できることを理解する。またコイル、磁性体の基本を習得する。本科目を通じて、教育目標項 目の(3)、(4)の達成に寄与する。

ベクトル解析に用いられる記号の意味を理解し、基本問題を計算できること

電束、磁束についてのガウスの法則、アンペアの周回積分の法則、ファラデーの電磁誘導の法則を理解し 数学で記述し計算できること。

変位電流と電流のそれぞれの概念を理解し、マックスウェル方程式として表現できること。

マックスウェルの微分方程式を導出し理解できること。

磁界のかかわる事項としてのコイル、磁性体について理解を深め、説明・計算ができること。

【授業キーワード】

電界、磁界、マックスウェル方程式、加えて授業項目に記載の項目

【授業内容及び授業方法】

講義では、磁界の記述、磁界と電流の間に成り立つ法則を理解する。更に磁界と電界が電磁誘導の法則によって結合され"電磁場"の概念となり、これに変位電流の考え方をとりいれることによって電磁場を記述するマックスウェル方程式が導出されることを学ぶ。以上の過程で電気工学にとって重要なコイルのインダクタン ス、強磁性体についても学ぶ。

演習の前半では電磁気学を理解するうえで欠かせない、ベクトル解析を中心に演習問題を出題する。後半 は講義の内容の理解を深めるため、講義内容に対応した演習問題を出題する。

講義では教科書にそって、必要に応じてプリントを配布し、板書、OHP等により説明を行なう。 演習では、30分程度、講義形式で問題の内容を解説し、その後、配布したプリント等を見ながら各自で演習問題を解く。その間、教官とTAが適宜質問を受け助言を行う。演習終了後には詳細に記述した回答を配る

本講義、演習では毎回、講義(演習)終了後に各自が講義(演習)で理解したこと、疑問に思ったことを記述 してもらい、それを回収し、疑問点に関しては次回の講義(演習)にて可能な限りフィードバックを行なう。

【授業項目】

- 1. 磁界(磁気現象、ビオ・サバールの法則、アンペールの法則、磁位、ローレンツ力)
- 2. 電磁誘導(ファラデーの法則)
- 3. インダクタンス(自己及び相互誘導インダクタンスの計算) 4. 磁性体(物質の磁性、強磁性体のヒシテリシスループ、磁気回路)
- 5. マックスウェル方程式(変位電流、マックスウェル方程式の積分形と微分形)
- 6. 電磁波(電磁波導出、平面波)

【教科書】

「基礎電磁気学 改訂版」 山口昌一郎著 (オーム社)

特に指定しないが電磁気学の教科書は数多く出版されているので、もし必要であるならば、各自、自分に合 った本を選択し自習することを薦める。

【成績の評価方法と評価項目】

講義では授業進度に呼応した数回の宿題リポート(40点)+期末試験(60点)とする。演習では演習(20点) +宿題(10点)+中間試験(35点)+期末試験(35点)とする。そして、講義と演習を平均し合計100点として 総合評価する。

【留意事項】

講義中のコメント・質問は歓迎する。本講義演習は「電気磁気学及び演習」」と対を成すものである。更に3年 1学期の「上級電気磁気学及び演習」へ接続・発展する。

Theory and Practice of Electric Circuit 1

【担当教員】

神林 紀嘉

【教員室または連絡先】

電気1号棟505室 内線9521 E-mail:nkamb@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

授業目的

電気回路は、電気・電子・情報通信分野における最も基礎的な専門科目の1つで、アナログ・ディジタル回路 、集積回路、通信・電力回線、各種測定器設計に欠くことのできないものである。そこでこの科目は高度な専 門科目を学ぶための基礎知識とその使い方を習得する。本科目を通じて教育目標(1)、(3)の達成に寄与する

達成目標

- 1. 高等学校で学んだ「物理」とこれから学ぶ電気回路の関係を明確にする. このために物理で学んだ直線 運動系における質量、コンプライアンス(ばね定数)、摩擦抵抗を例にとりこれらが電気におけるインダクタンス (コイル)、キャパシタンス(コンデンサ)及び抵抗と同じような働きをすることを理解する.
- 2. 電子部品の特性を理解する.
- 3. 定常現象と過渡現象の違いを理解する.
- 4. 電気回路に関するいろいろな定理とその使い方を学ぶ.
- 5. 時間領域解析と周波数領域解析手法を学ぶ(フェーザの導入).
- 6. 共振回路, ブリッジ回路の計算手法を理解するとともにそれらの応用について学ぶ.

【授業キーワード】

電圧、電流、直流、交流、電源(直流電源、交流電源)、オームの法則、キルヒホッフの法則、電力、フェーザ 、共振回路、ブリッジ回路、整合

【授業内容及び授業方法】

指定した教科書に沿って講義する. 適宜演習及び宿題を課す.

【授業項目】

- 1:電気回路の考え方
- 2:オームの法則、キルヒホッフの法則
- 3:回路網トポロジ
- 4:定常現象と過渡現象
- 5:テブナンの定理をもちいた簡単な電気回路の解析
- 6:回路の電力,正弦波電圧・電流とその複素数表示
- 7:中間試験
- 8:簡単な回路の正弦波定常解析
- 9:フェーザ
- 10:共振回路
- 11:交流回路の電力 12:重ね合わせの理
- 13:電源の等価交換(テブナン及びノルトン変換)
- 14:ブリッジ回路とその応用,回路の整合
- 15:期末試験

【教科書】

「電気回路を理解する」 著者 小澤孝夫 発行所 昭晃堂

【参考書】

「電気回路」著者 浜田 望 発行所 森北出版

【成績の評価方法と評価項目】

中間試験と期末試験(70点),演習(30点)合計100点 中間,期末試験をそれぞれ35点満点とし合計70点とする

演習は毎回宿題を出し、その合計を30点満点に換算する.

【留意事項】

本教科は「電気回路及び演習II」、「電子回路」、「線形電子回路」等に接続・発展する。

演習 2単位 2学期

Fundamental Information Processing Exercise

【担当教員】

山本 和英

【教員室または連絡先】

電気1号棟405号室, 内線9513, E-mail: ykaz@nagaokaut.ac.jp

【授業目的及び達成目標】

[授業目的]

技術者に要求されるコンピュータリテラシーの養成のため、計算機に関する基礎的な操作方法、および関連知識を学ぶ。演習で実際に計算機に触れることで計算機の基本的な操作方法、問題の捉え方(アルゴリズム)、並びに具体的なプログラミングとデバッグの技能を体得する。本科目は、教育目標(3)の達成に寄与する。

[達成目標]

- 1. アルゴリズムを自ら考え、PAD形式で明確に記述できること
- 2. C言語の基本的なプログラミングが作成できること
- 3. エディタ(Mule)を利用したファイル編集と電子メールの読み書きができること
- 4. Unix の簡単なコマンドが使用できること

【授業キーワード】

プログラミング、アルゴリズム、C言語、計算機、Unix

【授業内容及び授業方法】

計算機実習室ですべて演習形式で授業を進める。原則として概要説明と課題演習(または時間外課題)の繰り返しによって授業を進める。プログラミング課題は電子メールによって提出し、教官と電子メールのやり取りを行なうことで電子メールによる情報送受信の経験を積む。

【授業項目】

- 1. アルゴリズム
 - ・人間の思考と計算機の思考
 - •PAD (Problem Analysis Diagram)
 - ・PAD からプログラミング言語へ
- 2. 計算機の基本操作
 - ・Unix の基本的なコマンド操作
 - ・エディタ(Mule)によるファイル編集
 - ・電子メールの読み書き
- 3. C言語によるプログラミング
 - ・コンパイルとデバッグ
 - ・式と演算子
 - •制御構造
 - •配列
 - ・関数の構造
 - データの型
 - •入出力
- ・ポインタ

【教科書】

阿曽弘具(編)「Cによる情報処理入門」昭晃堂 (1997)

【参考書】

特に指定しない。

【成績の評価方法と評価項目】

出席及び演習姿勢(30点)と演習中に与える課題の達成度(70点)として、成績を評価する。

【留意事項】

本演習は、計算機の操作やプログラミングの経験が全くない学生を前提に演習を進める。2年1学期「情報処理概論」の履修も前提としないが、履修しておくことが望ましい。

【参照ホームページアドレス】

http://nlp.nagaokaut.ac.jp/

電気工学基礎実験 実験 2単位 2学期

Fundamental Experiments of Electrical Engineering

【担当教員】

電気系全教員

【授業目的及び達成目標】

電気・電子工学の基礎について理解を深め、計測技術を習得する。 さらに、安全、環境、倫理について考える力を身に付ける。本科目は、教育目標(1)、(2)、(5)、(8)に寄与する

【授業内容及び授業方法】

各実験班に分かれ、各実験指導教官の指示により各実験項目を4回で実施する。 1回目:実験計画、2・3回目:実験、4回目:レポート作成(または補充実験)。 レポートは、4回目の実験日の1週間後までに、必ず、各指導教官の指定する場所に提出する。各実験では、サブテキストが用意されているので、参考にすることができる。

【授業項目】

- 1. 電力回路および電力測定
- 2. トランジスタ回路(I) 3. トランジスタ回路(II)
- 4. ディジタルICと論理回路
- 5. 磁界の測定
- 6. 光波基礎実験

【教科書】

平成13年度の「学生実験指導書」については、プリントで配布する予定。

【成績の評価方法と評価項目】

レポート評価の他、遅刻およびレポート提出の遅れについては厳しく減点する。欠席の場合には事前に実験 担当教官に連絡し相談すること。

【留意事項】

学期の第1回目の実験日にガイダンスを行い、実験テキストの配布、実験の班割りおよび実験の進め方につ いての指示を行うので、必ず出席すること。

Theory and Practice of Electric Circuit 2

【担当教員】

吉川 敏則・和田 安弘

【教員室または連絡先】

居室(吉川):電気1号棟5階510室, 内線9526 居室(和田):電気1号棟6階608室, 内線9534

【授業目的及び達成目標】

授業目的

1端子対及び2端子対回路、回路の周波数特性、過度現象について解析法を習得する。また、代表的なこれらの回路の基本特性を理解する。

本科目は教育目標の(3)に寄与する。

達成目標

- ・回路の定常解析法である節点解析、網目解析ができること。
- ・1端子対回路について駆動点インミタンスの性質及び簡単な回路構成ができること。
- ・2端子対回路について各種パラメータを用いた表現法及び接続法と合成パラメータの関係を理解し、回路 構成が出来ること。
- ・回路の周波数特性の解析ができること
- ・線形回路網の過度現象について、微分方程式による基本回路の過渡解析法を習得し、一般線形回路網 の過渡解析ができること。

【授業キーワード】

節点解析、網目解析、1端子対回路、2端子対回路、周波数特性、過渡現象

【授業内容及び授業方法】

指定した教科書に沿って講義を行ない、適宜、補足資料を配布し説明する。 講義と並行して演習を行い各回路解析法及び特性の理解を十分に深める。

【授業項目】

授業項目

第1週~第2週:回路の定常解析(節点解析、網目解析)

第3週 :相互結合素子を含む回路(相互誘導回路)

第4週~第6週:1端子対回路(駆動点インミタンス、リアクタンス回路、逆回路、定抵抗回路)

第7週:中間試験

第8週~第10週:2端子対回路(アドミタンスパラメータ、インピーダンスパラメータ、4端子パラメータ、影像パラメータ)

第11週:回路の周波数特性

第12週~第14週:回路の過渡現象

第15週:期末試験

【教科書】

「電気回路を理解する」小澤孝夫著 昭晃堂

【参考書】

「電気回路論」電気学会

【成績の評価方法と評価項目】

中間試験と期末試験(70点)および演習(30点)の合計によって評価する.

【留意事項】

「電気回路及び演習」」を修得していることが望ましい。 本教科はさらに「アナログ回路工学」等に接続・発展する。

Electronic Circuits

【担当教員】

岩橋 政宏

【教員室または連絡先】

岩橋政宏、電気1棟504号室

【授業目的及び達成目標】

【授業目的】 電子回路の基本特性を学び、増幅回路の構成法や、諸特性の解析手法を学習する. 特にトラ ンジスタの動作特性の解析に焦点を当てることで、電気工学の基礎となる数学や回路解析手法の運用能力を高める。本科目は教育目標(1),(4),(9)の達成に寄与する。

【達成目標】1.電子回路の構成部品(受動素子と能動素子)について、特性や動作原理を説明できる。2.FET とバイポーラトランジスタの特性を理解し、等価回路で表現できる。3.FETとバイポーラトランジスタによる増幅回路について、諸パラメータを計算できる。4.増幅回路の縦続接続、帯域幅、差動増幅について基本を理 解し説明できる。

【授業キーワード】

トランジスタ、FET、バイポーラ、バイアス、等価回路、増幅回路、差動増幅

【授業内容及び授業方法】

【授業内容】まず、電子回路の構成部品である受動素子と能動素子についてまとめ、キルヒホフの電圧則と 電流則、制御電源、重ねの理について復習する。次に、FETとバイポーラトランジスタについて、それらの特性、バイアスと信号の関係、交流等価回路について学習する。また、FETとバイポーラトランジスタの基本増幅回路について、回路解析を演習や宿園を交えてじっくり行った後、増幅回路の縦続接続と帯域幅、回路 の集積化と差動増幅回路といった話題にも言及する。

【授業方法】指定したテキストを使用して講義を行う。宿題や演習問題を解きながら講義内容を吟味し、基本 的な数学や回路解析手法の運用能力を高める.

【授業項目】

1~2.受動素子と能動素子、キルヒホフの電圧則と電流則、制御電源、重ねの理

3~4.FETとバイポーラトランジスタの特性。バイアスと信号。 5~6.FETとバイポーラトランジスタの交流等価回路。

7.中間試験

8~9.FETの基本増幅回路

10~11.バイポーラトランジスタの基本増幅回路 12.増幅回路の縦続接続と帯域幅

- 13.回路の集積化と差動増幅回路
- 15.期末試験

【教科書】

藤井信生「電子回路学」講談社

【参考書】

電子回路学(電気学会)

【成績の評価方法と評価項目】

中間テスト(50点)と期末テスト(50点)の合計100点満点で総合評価を与える。

【留意事項】

受講者は電気回路の基礎(オームの法則、キルヒホッフの法則、電気回路素子)について習得していること が望ましい。本教科はさらに「アナログ回路工学」「ディジタル電子回路」等に接続・発展する。

Digital Electronics Circuits

【担当教員】

太刀川 信一

【教員室または連絡先】

電気1号棟501室、内線9517 E-mail tach01@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

今日の電子・情報・通信技術を支える基盤技術としてのディジタル電子回路について理解する。ディジタル電子回路設計に必要な基本的な考え方と設計法を学ぶ。ディジタル電子回路のための2進数演算、補数について理解する。AD変換、DA変換回路の原理を知る。これらの学習により、本科目を通して、ディジタル電子回路の解析および回路素子を使った設計の方法を修得することを目的とする。本科目は教育目標の (3),(4)に寄与する。

達成目標

- 1. ディジタル回路素子とその応用回路が理解できていること。
- 2. 論理代数が扱え、順序回路が設計できること
- 3. 数の表現、2進数演算、補数、演算回路が扱えること。
- 4. AD変換、DA変換回路を理解していること。
- 5. 新論理素子を理解していること。

【授業キーワード】

論理代数、ディジタル回路素子、カウンタ、シフトレジスタ、演算回路、AD変換・DA変換、新論理素子

【授業内容及び授業方法】

指定した教科書に沿って講義を行う。適宜、補足のためのプリントを配付する。 適宜、宿題を出す。中間、期末試験を行う。中間、期末試験時に講義のポイントをまとめたレポートの提出を 求める。

【授業項目】

- 1. ディジタル回路と基本論理ゲート 2. ディジタル回路素子
- 3-4. 応用回路
- 5-6. 論理代数と組合せ論理回路
- 7. 順序回路の基本構成要素
- 8. カウンタとシフトレジスタ
- 9. 中間試験
- 10-11. 数の表現、補数
- 12. 演算回路
- 13. AD変換·DA変換
- 14. 新論理素子
- 15. 期末試験

【教科書】

島田、穂刈、安川、塩田「ディジタル電子回路」朝倉書店

【参考書】

藤井信生「なっとくするディジタル電子回路」講談社

【成績の評価方法と評価項目】

宿題の合計を10点満点、中間レポート、期末レポートを各10点満点、中間試験、期末試験を各35点満点として、その合計で成績を評価する。その結果が40点以上59点以下の者に対して追試の機会を与える。追試は100点満点の試験とし、60点以上の得点をとれば60点として単位を認定する。

受講者は「情報処理概論」(2年1学期)を修得しておくことが望ましい。

電力工学 講義 2単位 2学期

Electric Power Engineering

【担当教員】

入澤 壽逸

【教員室または連絡先】

電気1号棟406室

【授業目的及び達成目標】

交流回路の解析法を基礎として、発電所から負荷に至る送電回路網の基本的事項を理解する。特に、3相交流回路に精通することを目的とする。 達成目標は、以下とする。 達成目標は、以下とする。 1)対称3相回路の21第24を修得する。

- 2) 非対称3相回路の計算法を修得する。
- 3) 送電線路の等価回路を導き、分布定数回路を理解する。
- 4) ベクトル電力の概念を理解し、送電特性に精通する。
- 5)対称座標法および3相交流発電機の基本式を理解し、発電機端子での故障計算法を修得する。
- 以上を通じて、教育目標(1)、(4)、(9)の達成に寄与する。

【授業キーワード】

電力系統、3相交流回路、对称座標法

【授業内容及び授業方法】

まず、3相交流回路の基礎を学ぶ。次に送電線の電気的特性を理解するために送電線の等価回路を導出 する。この等価回路を基にして、送電系統の電気的特性を学ぶ。次ぎに、3相対称座標法を学び、電力系統 の故障計算法を習得する。

授業はプリントを配布し、講義形式で行う。

【授業項目】

- 1. 3相交流回路の基礎(星形結線と環状結線、対称および非対称3相回路、交流電力、電力の測定)
- 2. 送電線路の等価回路(分布定数回路、簡易等価回路)
- 3. 送電特性(ベクトル電力、電力円線図、受電端負荷と調相容量)
- 4. 故障計算(3相対称座標法、3相交流発電機の基本式、対称分インピーダンス、3相交流発電機の故障計 算)

【教科書】

プリントを配付する。

【参考書】

たとえば、「電力系統」 林 泉著 昭晃堂

【成績の評価方法と評価項目】

中間テスト(50%)、期末テスト(50%)で評価する。

【留意事項】

受講者は「電気回路及び演習I、II」を修得していることが望ましい。 特に、3年次に「電力システム」を受講予 定の者は是非修得しておくことが望ましい。

電気主任技術者の資格修得を希望する学生は、本科目を受講することが望ましい。

Electrical Machinery

【担当教員】

近藤 正示

【教員室または連絡先】

電気1号棟407教官室(内線9507, e-mail:kondo@vos)

【授業目的及び達成目標】

直流回転機,変圧器,交流回転機などの電気機器について,その構造・動作原理を理解して,それぞれの機器の等価回路を導出し,静特性を定量的に評価できるようになる。本科目を通して教育目標の(4)電気技術者としての素養,(9)高度な専門技術への対応力などを身につける。

【授業キーワード】

電動機, 発電機, 変圧器, 等価回路

【授業内容及び授業方法】

教科書に従って,下記の項目について,板書などにより講義する。

【授業項目】

- 1.電磁機械の動作原理:ファラデーの法則,および,フレミングの法則に基づく電磁機械(電動機および発電機)の動作原理。
- 2.直流回転機: 誘導起電力・発生トルクの計算式, 整流子とブラシの構造, 等価回路, 励磁方式によるトルクー速度特性の相違。
- 3.変圧器:巻数比と等アンペアターンの法則,理想変圧器と等価回路,もれインダクタンスと鉄損,磁気飽和と電流の歪,三相結線。
- 4.交流回転機の動作原理:交流による回転磁界の生成,同期速度,極対数と回転速度,トルク発生のメカニズム。
- 5.誘導機:回転子の構造(かご形と巻線形),回転速度とすべり,定常時の等価回路と定数算定試験法,トルクー速度特性。
- 6.同期機:構造,等価回路と試験法,同期リアクタンス,力率による電圧特性の違い,界磁電流と力率(同期 調相機)

なお、講義日程表を第1回講義日に配布する。

【教科書】

宮入庄太:「大学講義:最新電気機器学」, 丸善

【成績の評価方法と評価項目】

上記の授業項目に関する筆記試験を2回行う。評点は中間試験(50%)と期末試験(50%)の合計とする。

【留意事項】

予備知識として電磁気学の基礎法則、すなわち、ファラデーの法則とフレミングの法則を理解しているものとする。

制御工学基礎 講義 2単位 2学期

Fundamentals of Control Engineering

【担当教員】

伊東 淳一

【授業目的及び達成目標】

授業目的:

本講義では、自動制御の基礎を理解し、所望の一入力一出力系のフィードバック制御系(古典制御系)を 設計できるようにする。本科目を通じて、教育目標(1)、(4)の達成に寄与する。

- ・微分方程式で表現される制御対象を,ラプラス変換を用いて,ブロック図の制御モデルで表現できること ・制御対象の信号伝達を理解して伝達関数を導出し、一入力一出力系のフィードバック制御系の特性を把 握できること。
- ・フィードバック制御系の周波数応答特性と時間応答特性を理解し,安定判別と安定度を説明できること。
- ・フィードバック制御系の特性補償法を理解し、補償器の設計ができること。

【授業キーワード】

動的システム,ブロック図,時間応答,周波数応答、ナイキストの安定判別,位相余有,特性補償。

【授業内容及び授業方法】

授業内容:

本講義では、先ず、微分方程式で表現される制御対象を、ラプラス変換によってブロック図に表現することを説明する。線形代数や微積分などの数学を実際の物理システムに応用することから始まる。そして、所望 の応答特性を持つフィードバック制御系を、物理的に設計できるようにする。

本講義は、基本的には教科書に沿って行っていく。また、具体的な演習を行って理解を深める。

【授業項目】

第1週 :自動制御の背景と目的

第2週~第4週:ラプラス変換によるモデル化とブロック図(微分方程式、ラプラス変換、ブロック図、最終値の 定理)

第5週~第6週:フィードバック制御の基礎(フィードバック制御系の定常特性と過渡特性) 第7週~第8週:周波数応答(周波数応答、ベクトル軌跡、ボード線図)

:中間試験 第9调

第10週~第12週:フィードバック制御系の安定性と過渡特性(ナイキストの安定判別法、位相余有、ゲイン余

第13週~第14週:フィードバック制御系の特性補償(ゲイン補償, 位相遅れ補償, 位相進み補償)

:期末試験 第15週

【教科書】

「制御基礎理論」中野道雄,美多勉 著(昭晃堂)

【参考書】

特に指定しない。

【成績の評価方法と評価項目】

小レポートを4回行う。小レポートは5満点とする。中間試験は30点満点とし、期末試験は50点満とする。 小レポート、中間試験、期末試験の合計100点満点で総合評価をする。

評価項目:

- ・微分方程式で表現される制御対象のブロック図に表現する知識の習得度。
- ・フィードバック制御系の定常特性と過渡特性の理解度。
- ・ナイキストの安定判別法,ボード線図,位相余有,ゲイン余有の物理的な意味と導出方法の理解度と習得 度。 ・フィードバック制御系の特性補償に関する知識の習得度。

【留意事項】

3年生講義科目の「パワーエレクトロニクス」と「制御理論」を履修していることが望ましい。

講義 2単位 2学期

Electrical and Electronic Engineering for Measurement

【担当教員】

打木 久雄·内富 直隆

【教員室または連絡先】

打木: 電気1号棟601教官室、内線9527、E-mail: uchiki@nagaokaut.ac.jp 内富: 電気1号棟305教官室、内線9505、E-mail: uchitomi@nagaokaut.ac.jp

【授業目的及び達成目標】

【授業目的】最近の計測器はコンピュータが組み込まれ、動作原理を知らなくても自動的に測定を行ってくれる。しかし、得られた値が妥当であり、測定が正しく行われたかを評価するためには基本的な動作原理を把 握しておく必要がある。本講義では、電気・電子計測器の基本的な動作原理とそれらの使用法を述べる。

【達成目標】

測定値の誤差や精度を考慮した測定が行えること 雑音の特性を理解すること アナログ量とディジタル量の特徴を理解すること 電圧と電流の測定法を習得すること 周波数と位相の測定法を習得すること 各種の電力の測定法を習得するこ 磁束や磁気感受率の測定法を習得すること

オシロスコープや周波数解析器の動作原理を理解すること

【授業キーワード】

誤差、精度、雑音、アナログ量、ディジタル量、電圧と電流の測定法、周波数と位相の測定法、電力の測定 法、磁束の測定法、磁気感受率の測定法、オシロスコープ、周波数解析器

【授業内容及び授業方法】

【授業内容】まず、測定の単位系・計測の考え方を学び、次に直流・交流計器の構成、それらによる電圧測 定、電流測定、抵抗測定、インピーダンス測定の各技術を修得する。さらに、信号の電力測定、減衰量測定、増幅度、S/N測定、周波数測定、位相測定、そして周波数特性測定法を順を追って学ぶ。また、各測定法・計測技術においては基礎的な原理を中心に学ぶが、併せて最近の計測器の技術も学ぶ。

【授業方法】教科書に沿って講義が行われる。

【授業項目】

- 1. 計測の基礎
- 2. 雑音
- 3. 測定と標準, アナログ量とディジタル量
- 4. 電圧と電流の測定 5. インピーダンスの計測
- 6. 周波数と位相の測定
- 7. 中間試験
- 8-9. 電力の測定
- 10-11. 磁気測定
- 12-13. 記録計と波形測定
- 14. 電気電子計測応用
- 15. 期末試験

【教科書】

「電気・電子計測」大浦、関根共著 昭晃堂

【参考書】

「電気計測」 近藤浩著 森北出版 「電気磁気測定の基礎」 金井、齋藤、日高共著 昭晃堂 「基礎電気電子計測」 菅野允著 コロナ社

【成績の評価方法と評価項目】

中間試験と期末試験、随時行う小テストの結果を併せて成績を評価する。

電子・光波工学基礎Ⅰ

講義 2単位 1学期

Fundamentals of Electronics and Optics I

【担当教員】

濱崎 勝義

【教員室または連絡先】

居室:電気1号棟3階301室、内線9501 E-mail:mchama@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

授業目的

電子・光波デバイスの基礎物理について、古典電子論と量子力学の立場から学習する。特に、モデル方程式の導出と解析法に重点を置いて学習し、電子・光波デバイスの動作原理を理解するための基礎を身に付ける。本科目は教育目標の(4),(9)に寄与する。

達成目標

- 1. 古典電子論のモデルと解析法の習得。
- 2. 固体の光学特性, ホール効果, フォノンについて説明できること
- 3. Boltzmann分布, Fermi分布, Bose分布関数について説明できること。
- 4. Schrodinger方程式の導出とその簡単な解析ができること。

【授業キーワード】

古典電子論, 結晶中電子の量子論, 量子統計

【授業内容及び授業方法】

授業内容

最初に、古典電子論のモデル方程式について学習しその解析法を学ぶ。続いて、固体の光学特性、ホール効果、及びBoltzmann分布・Fermi分布・Bose分布について学習した後、量子論の基礎としてSchrodinger 方程式の導出法とその解析法の基礎を学ぶ。

授業方法

資料に基づいて講義を行い、必要に応じてレポート・小テストを課す。

【授業項目】

- 1. 古典電子論
- 2. 固体の光学特性
- 3. ホール効果
- 4. 格子振動とフォノン
- 5. Boltzmann分布, Fermi分布, Bose分布
- 6. 量子力学の基礎
- 7. バンド理論の基礎

【教科書】

なし

【参考書】

「電子物性」高橋・國岡(昭晃堂), 「固体物理入門」キッテル(丸善),「量子工学」神成(培風館)など

【成績の評価方法と評価項目】

中間・期末試験(各50%)の合計で成績評価する。

【留意事項】

受講者は物理学、電気磁気学の基礎を習得したものと想定する。この授業科目は、2学年2学期に開講される「電子・光波工学基礎II」へ接続・発展する。

電子・光波工学基礎Ⅱ

講義 2単位 2学期

Fundamentals of Electronics and Optics 2

【担当教員】

上林 利生・濱崎 勝義

【教員室または連絡先】

居室:電気1号棟3階301室、内線9501 E-mail:mchama@vos.nagaokaut.ac.jp

上林利生

居室:電気1号棟6階605室、内線9531 E-mail: toshikam@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

授業目的

半導体物理学・オプトエレクトロニクス、及び量子効果デバイスの基礎物理について量子論の立場から学 習し、種々のデバイス応用のための基礎を身に付ける。 本科目は教育目標の(4),(9)に寄与する。

- 1. 半導体デバイスの動作原理について理解し、説明できること。
- 2. 光デバイスの動作原理について理解し、説明できること。
- 3. 光通信の基礎について理解し、説明できること。

【授業キーワード】

半導体物理学、量子効果デバイス、オプトエレクトロニクス、光通信

【授業内容及び授業方法】

授業内容

最初に半導体基礎物理学と量子効果デバイスについて学習し、デバイスの動作原理を理解する。続いて、 情報通信用としての光ファイバや光デバイスの基礎を学習する。

授業方法

配付資料に基づいて講義を行い、必要に応じてレポート・小テストを課す。

【授業項目】

- 1. バンド理論の基礎
- 2. 比熱とノイズ
- 3. 半導体デバイスの基礎(PN接合)
- 4. 半導体の熱電効果(Peltier効果・Seebeck効果)
- 5. 量子効果デバイス
- 6. 光導電効果と光起電力効果
- 7. 発光ダイオードとレーザー 8. 光エレクトロニクスと光伝送路・光通信

【教科書】

なし

【参考書】

「固体物理入門」キッテル(丸善),「量子工学」神成(培風館), 「電子物性」高橋・國岡(昭晃堂)など

【成績の評価方法と評価項目】

中間・期末試験(各50%)の合計で成績評価する。

【留意事項】

受講者は物理学、電気磁気学の基礎を習得し、「電子・光波工学基礎I」を学んだものと想定する。この授業 科目は3学年1学期に開講される「デバイス工学」へ接続・発展する。

化学実験Ⅲ 実験 1単位 2学期

Experiment of Chemistry 3

【担当教員】

化学系全教員

【教員室または連絡先】

化学1号棟5階523室(担当梅田実)

【授業目的及び達成目標】

分析化学分野の実験に不可欠な各種金属イオンの定性、定量分析の基本操作を習得し、分析化学的な考 え方を学ぶことを目的とする。また、実験に必要な器具、試薬の取り扱いを通して分析化学分野の基礎的実 験技術を身につける。

【授業キーワード】

定性分析、定量分析、水酸化物、硫化物、酸、金属イオン、重量分析、容量分析

【授業内容及び授業方法】

全ての実験項目において個人実験を行う。実験項目によっては、1週だけ、または、2週に渡って行うものが ある。実験開始前に、担当者より口頭またはビデオ教材を用いた実験内容の説明があり、これに引き続いて 実験を行う。終了後は、実験結果を基に個別に簡単なデイスカッションを行う。

【授業項目】

1)~8)の項目を、十五週間で行う。

- 1)ガイダンス(1回)
- 2)金属の水酸化物(1回)

アルカリ金属を除く金属イオンは水酸化物イオンと反応して水酸化物を作り沈殿する。種々の水酸化物の 溶解度積は異なり、また両性を示す場合もありこれが金属イオンの識別に利用されている。

3)金属の硫化物(2回)

硫化水素の解離は水素イオン濃度に影響し、硫黄イオン濃度が金属硫化物沈殿に関係することを実験す

4)金属と酸(2回)

塩酸、硫酸、硝酸のような強酸と金属の反応性について金属イオンに特有な化学反応を利用して観察する

5)錯イオン(2回)

配位子と錯形成した金属錯イオンと水和金属イオンの反応性の違いを金属イオンに特有な化学反応を利 用して観察する。

6)鉄の重量分析(3回)

るつぼの空焼き、酸化鉄沈殿の生成、沈殿物の焼成、秤量操作を通して定量分析を行う。

7)酸化還元滴定(3回)

過マンガン酸滴定によりシュウ酸ナトリウム標準溶液の調製、過マンガン酸カリウム溶液の標定、硫酸第一 鉄および二クロム酸カリウム未知試料の滴定を行う。これにより容量分析の考え方と技術を修得する。 8)発表会(1回)

化学実験IIIに少しでも関連し、興味を持ったテーマを自由に選び、OHP2枚にまとめる。1人10分の持ち時 間で5分発表、5分質疑応答を行う。

【教科書】

化学系学生実験委員会が制作したプリントを用いる。

【参考書】

第1週にガイダンスを行い、その際に配布する資料を参考にする。

「分析化学」改訂増補版、阿藤質、培風館(1967) 基礎化学選書「分析化学」長島弘三、富田勲、裳華房(1969) 「基礎分析化学」本浄高治、化学同人(2000)

【成績の評価方法と評価項目】

1.評価方法

全テーマの実験に出席し、時間内に実験を終了させ、レポートを提出する事を単位認定の前提条件とする無断欠席、レポート未提出は単位取得の権利を与えない。なお、遅刻、レポート提出が遅れた場合には大 幅な減点対象として取り扱う。

2.評価項目

1)~6)の授業項目の実験内容を十分理解し、実験を遂行できる技能を習得していること。また、得られた 結果を正しく解析し、これらを論理的に、レポートに記述できる能力について評価する。

【留意事項】

- ・「工学基礎実験」の単位取得に問題のないことを前提とする。
- ・実験の実施においては個々の実験目的、操作手順は授業前に必ず予習を必要とする。実験内容、方法等 をノートに簡潔にまとめ、実験ノートのチェックを受けた後に実験を行う。
- ・レポートは次週テーマの実験日、13:00までに提出すること。

演習 1単位 1学期

Fundamental Material Chemical Exercise 1

【担当教員】

化学系全教員

【教員室または連絡先】

化学経営情報1号棟427室(担当:課程主任/植松敬三)

【授業目的及び達成目標】

材料化学分野における基礎学力向上のため、化学の基本事項(特に計算を要するもの)に関する演習を 行う。類似の問題を多数解くことにより、揺るぎのない基礎学力を身につけることを目標にする。

【授業キーワード】

一般化学、演習、計算問題

【授業内容及び授業方法】

毎回ある決まったテーマについてプリントを配布し、基本事項の復習およびそれに関する演習を行い、レポートを課す。演習においては、演習時間終了後に答案を回収し採点する。未解答または誤解答の問題につ いて、レポートを提出する。また、演習内容を確実に身につけるため、中間試験ならびに期末試験を行う。

【授業項目】

第1回 物質の量・化学反応

第2回 気体の状態方程式・固体の溶解度

第3回 熱化学

化学平衡 第4回

酸•塩基 第5回

酸化•還元 第6回

第7回 電池 · 電気分解

第8回 中間試験

典型元素の化学(?-?族) 第9回

第10回 典型元素の化学(?、?族)

第11回 典型元素の化学(?、?族)

第12回 有機化学の基礎(元素分析・命名法) 第13回 有機化学の基礎(脂肪族) 第14回 有機化学の基礎(芳香族)

第15回 期末試験

【教科書】

特に指定しない。

【参考書】

特に指定しないが、演習時には1年次に使用した教科書あるいは各自が所有する参考書等を持参するのが 望ましい。

【成績の評価方法と評価項目】

1.評価方法

各回の演習に出席することを前提に以下の配点で評価する。演習に出席しない者はその回のレポートの 提出資格を有しない。

演習・レポート 52% (演習1回あたり4点) 試験 48% (試験1回あたり12点)

2.評価項目

各授業項目に関する内容を理解し、これらに関する問題を問題なく解け、且つ、基礎化学の一般的知識を 有すること。

【留意事項】

演習には参考書および電卓を持参することが望ましい。試験には電卓のみ持込み可とする。

fundamental Material Chemical Exercise 2

【担当教員】

化学系全教員

【教員室または連絡先】

化学経営情報1号棟427室(担当:課程主任/植松敬三)

【授業目的及び達成目標】

基礎材料化学演習Iに引き続き、材料分野における基礎学力向上のため、化学の基本事項に関する演習を 行う。類似の問題を多数解くことにより、揺るぎのない基礎学力を身につけることを目標にする。

【授業キーワード】

基礎化学、無機化学、有機化学、物理化学

【授業内容及び授業方法】

基礎材料化学演習I同様に、毎回ある決まったテーマについてプリントを配布し、基本事項の復習およびそれに関する演習を行い、レポートを課す。演習においては、演習時間終了後に答案を回収し採点する。未解答または誤解答の問題について、レポートを提出する。また、演習内容を確実に身につけるため、中間試験 ならびに期末試験を行う。

【授業項目】

- 第 1回 原子、分子の構造 第 2回 スペクトルと電子状態・混成軌道と結合角
- 反応速度と活性化エネルギー 第 3回
- 第4回 弱酸の酸解離とイオン積
- 第 5回 希薄溶液の性質
- 第 6回 熱力学第一法則(その1) 第 7回 熱力学第一法則(その2)
- 第8回 中間試験
- 第 9回 脂肪族炭化水素の反応
- 第10回 芳香族炭化水素の反応
- 第11回 含酸素有機化合物(その1)
- 第12回 含酸素有機化合物(その2) 第13回 含窒素有機化合物
- 第14回 天然有機化合物・天然および合成高分子
- 第15回 期末試験

【教科書】

特に指定しないが、講義の進度に合わせて一般化学、基礎化学熱力学、基礎有機化学の教科書を持参す ること。

【参考書】

特に指定しないが、演習時には1年次に使用した教科書あるいは各自が所有する参考書等を持参するのが 望ましい。

【成績の評価方法と評価項目】

1.評価方法

各回の演習に出席することを前提に以下の配点で評価する。演習に出席しない者はその回のレポートの 提出資格を有しない。

演習・レポート 52% (演習1回あたり4点) 試験 48% (試験1回あたり12点)

2.評価項目

各授業項目に関する内容を理解し、これらに関する問題を問題なく解け、且つ、基礎化学の一般的知識を 有すること。

【留意事項】

演習には参考書および電卓を持参することが望ましい。試験には電卓のみ持込み可とする。

基礎化学英語 [演習 1単位 1学期

Fundamental Chemical English 1

【担当教員】

化学系全教員

【教員室または連絡先】

化学経営情報1号棟427室(担当:課程主任/植松敬三)

【授業目的及び達成目標】

材料化学分野における基礎学力の向上のため、化学的側面をもつ英文をテキストとした演習を行い、実質的な英文読解力の向上をめざす。化学の発見の歴史は、思いもしなかった偶然により得られた積み重ねの歴史といっても過言ではない。有機材料、無機材料あるいはさまざまな解析法の中には別の目的をもって行なわれた実験の中で偶然に発見されたものが多い。結果的に幸運をもたらす発見をSerendipityという。本演習では、単に英文を訳すのではなく、ある発見が行なわれたプロセスを平易な専門用語により理解していく。その過程で、将来学術論文を読むために必要な語学力を身につける。

【授業キーワード】

化学英語、精訳、要訳、発音

【授業内容及び授業方法】

教科書に記載されている適当なテーマの英文について、理解の程度に応じて一人づつ精訳、要訳、あるいは発音させながら、読み進む。

【授業項目】

Archimedes, Columbus, A sick indian discovers quinine, Newton, The electric battery and electromagnetism, Vaccination, Discoveries of chemical elements, Nitrous oxide, Synthesis of urea, Daguerre and the Invention of photography, Rubber, Psteur, Synthetic dyes and pigments, Molecular architecture, Nobel, Celluloid and rayon, Friedel and crafts, Archarology, Astronomical serendipity, Medical discoverries, X ray, Substitute suger, Safety glass, Antibiotics, Nylon, Polyethylene, Teflon, Gasoline technology, Drugs, Brown and Wittig, Polycarbonate, Modern living, DNA, Organic synthesis, Chemical crowns and cryptsのうちからいくつかの章を選び、各1章を3回から4回の演習で読み進む。

【教科書】

「Serendipity - Accidental Discoveries in Science」R. M. Roberts著, John Wiley & Sons, Inc., New York(1989).

【成績の評価方法と評価項目】

1.評価方法

学んだ範囲内での理解力を確認するため毎時間小試験を行う。担当教官によってはレポートも出題される。出席状況、小試験およびレポートの各成績を参考に評価を行なう。

2.評価項目

授業項目の各内容文を精訳、要訳、発音ができ、これらを容易に読み進むことのできる英語能力を有すること。具体的には、例えば 1)主な化学元素の名称を英語で理解できる 2)化学実験に用いる器具の英語の名称が理解できる 3)化学に関する英文の記述が理解できる 4)化学に関する英文の記述を正確に日本語に訳せる

等である。 【**留意事項**】

前日までに必ずわからない単語について辞書をひいて意味および発音を調べておく。

Fundamental Chemical English 2

【担当教員】

化学系全教員

【教員室または連絡先】

化学経営情報1号棟427室(担当:課程主任/植松敬三)

【授業目的及び達成目標】

材料化学分野における基礎学力の向上のため、化学的側面をもつ英文をテキストとした演習を行い、実質的な英文読解力の向上をめざす。化学の発見の歴史は、思いもしなかった偶然により得られた積み重ねの歴史といっても過言ではない。有機材料、無機材料あるいはさまざまな解析法の中には別の目的をもって行なわれた実験の中で偶然に発見されたものが多い。これら結果的に幸運をもたらす発見をSerendipityという。本演習では、単に英文を訳すのではなく、ある発見が行なわれたプロセスを平易な専門用語により理解していく。その過程で、将来学術論文を読むために必要な語学力を身につける。

【授業キーワード】

化学英語、精訳、要訳、発音

【授業内容及び授業方法】

教科書に記載されている適当なテーマの英文について、理解の程度に応じて一人づつ精訳、要訳、あるい は発音させながら、読み進む。

【授業項目】

Archimedes, Columbus, A sick indian discovers quinine, Newton, The electric battery and electromagnetism, Vaccination, Discoveries of chemical elements, Nitrous oxide, Synthesis of urea, Daguerre and the Invention of photography, Rubber, Psteur, Synthetic dyes and pigments, Molecular architecture, Nobel, Celluloid and rayon, Friedel and crafts, Archarology, Astronomical serendipity, Medical discoverries, X ray, Substitute suger, Safety glass, Antibiotics, Nylon, Polyethylene, Teflon, Gasoline technology, Drugs, Brown and Wittig, Polycarbonate, Modern living, DNA, Organic synthesis, Chemical crowns and cryptsの中から数章を選び、各1章を3回から4回の演習で読み進む。

【教科書】

「Serendipity - Accidental Discoveries in Science」R. M. Roberts著, John Wiley & Sons, Inc., New York(1989).

【成績の評価方法と評価項目】

1.評価方法

学んだ範囲内での理解力を確認するため毎時間小試験を行う。担当教官によってはレポートも出題される。出席状況、小試験およびレポートの各成績を参考に評価を行なう。

2.評価項目

授業項目の各内容文を精訳、要訳、発音ができ、これらを容易に読み進むことのできる英語能力を有すること。具体的には、例えば 1)主な化学元素の名称を英語で理解できる 2)化学実験に用いる器具の英語の名称が理解できる 3)化学に関する英文の記述が理解できる 4)化学に関する英文の記述を正確に日本語に訳せる 等である。

【留意事項】

前日までに必ずわからない単語について辞書をひいて意味および発音を調べておく。

基礎化学演習 演習 1単位 2学期

Exercise on Basic Chemistry

【担当教員】

化学系全教員

【教員室または連絡先】

化学経営情報1号棟427室(担当:課程主任/植松敬三)

【授業目的及び達成目標】

材料開発工学課程に配属された学生で、基礎化学とそれに関連する分野の理解が足りない学生に対して、これらを深く理解するために開講される演習科目である。また、2年次、1学期に開講される基礎専門科目を理解するために必要な基礎工学知識に関しても演習を行う。

【授業キーワード】

基礎化学、化学演習、専門工学知識

【授業内容及び授業方法】

講義は演習形式で行う。担当教官の演習課題の解答、考察事項をレポートで提出する事を義務づける。

【授業項目】

一般化学、基礎化学、基礎数学

【教科書】

特になし。

【参考書】

必要に応じて担当教官が指示をする。

【成績の評価方法と評価項目】

1.評価方法

全ての演習課題にレポート提出による解答を義務づける。未提出者は、単位取得の権利を与えない。

2.評価項目

授業項目の各内容に関する基礎知識を習得し、演習内容を理解する必要がある。

【留意事項】

この講義は化学および材料を修学する上で必要となる基礎的学力の欠如している学生に対して開講される補講的な意味合いを持つ演習科目である。従って、本課程に配属された時点で、履修希望者に対して、試験または面接等を実施し、これに基づいて履修資格を担当教官が決定する。

基礎無機化学 講義 2単位 2学期

Fundamental Inorganic Chemistry

【担当教員】

小松 高行・齋藤 秀俊

【教員室または連絡先】

化学経営情報1号棟423室(小松), 化学経営情報1号棟426室(齋藤)

【授業目的及び達成目標】

材料化学の基礎となる無機化学を学習する。

【授業キーワード】

原子構造、電子配置、周期表、イオン結合、共有結合、酸化還元、電気分解、酸塩基、Lewis酸・塩基、相平 衡、相律、状態図、典型元素、遷移金属

【授業内容及び授業方法】

講義および演習を通じて、原子構造、結晶構造、結合様式等の基礎的概念を解説する。特に毎回講義項目を1つのみ設定し、その内容が十分理解できるように進める。

【授業項目】

1. 原子構造と周期表(2回)

物質と原子、原子核と電子構造、電子配置と周期表について学ぶ。

2. 化学結合と構造(2回)

イオン結合、共有結合、水素結合、配位結合について学び、その知識をもって結合や構造の基礎を理解す る。 3.酸化還元(2回)

酸化還元の基礎、酸化数、酸化還元電位、電気分解について学ぶ。

4. 酸•塩基(2回)

Arreheniusの酸・塩基、Bronstedの酸・塩基、Lewisの酸・塩基など、酸と塩基について、いろいろな方向から 概説する。

5. 相平衡(2回)

相律、1成分系および2成分系の状態図、溶液の蒸気圧、固相・液相平衡について学ぶ。

6. 典型元素の非金属の化学(2回)

様々な典型元素の非金属の性質について学ぶ。

7. 遷移金属の化学(2回)

鉄族、銅族および亜鉛族の性質について学ぶ。

8.期末試験(1回)

【教科書】

「無機化学」内田希・小松高行・幸塚広光・齋藤秀俊・伊熊泰郎・紅野安彦 共著(2000)朝倉書店

【成績の評価方法と評価項目】

演習問題、定期試験により成績評価を行なう。

演習問題では、各授業項目の基本的知識を具体的問題で理解、発展させる。

定期試験では、各授業項目につき計算能力や具体的内容を問う問題を出題する。

Fundamental Organic Chemistry

【担当教員】

下村 雅人

【教員室または連絡先】

生物1号棟256室

【授業目的及び達成目標】

有機材料や高分子材料の科学を学んで行く上で必要となる有機化学の基礎的な知識を修得し、有機化合 物の性質や基本的な反応について理解を深めることを目的とする。

【授業キーワード】

有機化学、有機化合物、化学結合、反応機構、置換反応、付加反応、脱離反応、求核反応、親電子反応

【授業内容及び授業方法】

有機化合物を構成する化学結合について概説し、次いで、有機化合物の性質と基本的な反応について、有機電子論的な解説も加えながら、できるだけ平易に論述する。さらに、高分子化合物についての入門的な解説も行う。有機化学で扱う化合物と反応は広範であるが、これらを単に覚えるのではなく、基礎的な考え方や 原理を理解することに力点を置いて講義を進める。板書を多用して講義を行うので、要領よくノートをとって復習に活用すること。

【授業項目】

- 1. 有機化合物を構成する化学結合(第1週~第4週)

- 1.1 有機化合物とその分類 1.2 化学結合の様式 1.3 混成軌道と共有結合 2. 有機化合物の性質と反応(第5週~第13週) 2.1 飽和炭化水素と不飽和炭化水素 2.2 芳香族炭化水素 2.3 アルコール、フェノール、エーテル 2.4 ハロゲン化炭化水素 2.5 アミンとその誘導体 2.6 アルデヒドとケトン 2.7 カルボン酸と
- その誘導体 2.8アミノ酸 3. 高分子化学入門(第14週)
- 4. 定期試験(第15週)

【教科書】

「有機化学」(竹中克彦、西口郁三、山口和夫、鈴木秋弘、前川博史、下村雅人著)朝倉書店

【参考書】

ハート「基礎有機化学」(秋葉欣哉、奥彬 訳)培風館

【成績の評価方法と評価項目】

- 1. 評価方法
 - 定期試験の結果に基づいて評価する。
- 2. 評価項目
- (1)有機化合物を構成する化学結合(とくに共有結合)について理解したか。
- (2) 官能基による有機化合物の一般的分類を理解したか。
- (3)授業項目 2. で述べた各化合物群の特徴と代表的な反応を理解したか。

【留意事項】

この授業は、生物機能工学課程2年の化学IIIと同一である。

基礎化学熱力学 講義 2単位 2学期

Basic Chemical Thermodynamics

【担当教員】

塩見 友雄·五十野 善信·河原 成元

【教員室または連絡先】

化学経営情報1号棟327室(塩見), 化学経営情報1号棟326室(五十野), 化学経営情報1号棟324室(河 原)

【授業目的及び達成目標】

物質の状態および化学反応を含む物質の状態の変化をエネルギー的にマクロに理解する上で化学熱力学は必須の学問であり、化学のあらゆる分野の基礎となるものである。また、ミクロな世界を扱う量子化学や統計熱力学も熱力学の理解無しに学ぶことは出来ない。本講義では、化学熱力学の基礎的事項、特に、熱力学第一法則と第二法則、自由エネルギーと相平衡の概念の徹底的理解を目指す。

【授業キーワード】

熱力学第1法則、熱力学第2法則、自由エネルギー、相平衡

【授業内容及び授業方法】

熱力学は三つの原則だけを用いて創り上げられた壮大な体系である。したがって、積極的に疑う理由が無い 三原則にどのようにしてたどり着いたのか、それらの物理的意味は何か、を論理的に理解することがきわめて 重要である。本講義では、熱力学の考え方を演習をまじえながら学ぶことに重点を置く。

【授業項目】

- 1. 序および熱力学の理解に必要な数学(1回)
- 2. エネルギー保存と熱力学第一法則(4回) 3. エントロピーと熱力学第二法則(4回)
- 4. 自由エネルギー(2回)
- 5. 相平衡と相転移(3回)
- 6. 期末試験

【教科書】

ニューテック化学シリーズ「物理化学」、藤井信行ら著、(2000)、朝倉書店

【参考書】

「物理学とは何だろうか(上)」(岩波新書 黄版-85)、朝永振一郎著、(1979)、岩波書店

【成績の評価方法と評価項目】

- 1. 評価方法
- 小試験および提出したレポートの内容と期末試験により成績を評価する。
- 2. 評価項目
- ・熱力学第一法則、第二法則および自由エネルギーを理解していること。
- ・Gibbsの相律および自由度、相平衡を理解していること。

- 1. 本講義の履修に関する条件は特に無いが、高等学校程度の化学、物理、数学の知識を前提とする。 2. 理解困難な点、不明な点があれば、できる限り講義中に質問すること。積極的質問を歓迎する。講義時間外でも質問を受け付ける。電子メールでの質問も受け付けるが、受講者全員の理解を助けるため、寄せられた質問への答えは原則として講義中に与える。電子メールアドレスは講義で知らせる。 3. 本講義は学部後期のあらゆる化学関連科目を学ぶ上での基礎となる。
- 1)理想気体の状態方程式とモルの概念については知っていることが望ましい。2)理解困難な点は、授業中で も時間がある限り質問に答えるが、来室やe-mail等によっても受け付ける。3)本講義内容は、3年生における「 物理化学」だけでなく他の化学関連のあらゆる科目を学ぶ上で重要である。

Basic Physical Chemistry 1A

【担当教員】

野坂 芳雄

【教員室または連絡先】

化学経営情報1号棟527室

【授業目的及び達成目標】

分子の中の電子の挙動を明らかにし化学結合を理解するのに必要な量子化学の基礎を習得することを目的 とし、電子およびすべての物質が波として扱うことが出来、その考えを用いて化学結合が説明できることを達 成目標とする。

【授業キーワード】

量子力学、量子化学、量子数、原子構造、原子スペクトル、化学結合、分子運動、並進運動、分子振動、分 子回転、自由度、熱容量、エネルギー分配

【授業内容及び授業方法】

講義の前半では、なぜ量子論が必要なのかを説明した後、量子論の基礎を解りやすく解説する。物質は、い ろいろな化学結合で形成されているが、その化学結合を理解するには、量子論の知識が必要である。毎回、 講義中に適宜簡単な試験を行い、理解度を確かめながら進める。講義の後半では、気体や固体の熱容量(比熱)が、どのような理由で生じるかを、前半の量子論を用いて説明する。

【授業項目】

第1回 エネルギーの大きさと量子論の必要性(光の二重性、物質のドブロイ波)

第2回 原子のスペクトルと原子の量子数

第3回 多電子原子の電子構造

第4回 原子間結合の形成と多原子分子の構造

第5回 分子の並進運動、振動、回転運動とエネルギー、エネルギーの自由度 第6回 分子運動エネルギーの量子論(波動としてあらわす分子の運動エネルギー)

第7回 分子の運動エネルギーの分配と熱容量(固体、液体、気体の熱容量の比較)

【教科書】

「物理化学」藤井信行・塩見友雄・泉生一郎・伊藤治彦・野坂芳雄・尾崎裕 共著(2000)朝倉書店の第2.3

【成績の評価方法と評価項目】

成績評価に関し、試験70%とし、毎回のテストを30%とし全体の点数を決定する。

物質の運動量と波動との関係を計算できる。

分子3種類の運動と、量子化によって生じる、エネルギーユニットの大きさについて理解しているかどうか。 熱容量は物質の内部運動により熱エネルギーが蓄えられることを理解しているかどうか。 温度と熱エネルギーの関連を理解しているかどうか。

【留意事項】

理解困難な点、不明な点は授業で質問すること。授業時間以外の質問も随時受け付ける。

Basic Physical Chemistry 1B

【担当教員】

井上 泰宣

【教員室または連絡先】

分析計測センター209室

【授業目的及び達成目標】

物質変換を行う化学反応に関し、ある条件下で目的とする化学反応が進行するかどうか、また進行する場合には、その早さを決めている因子は何かを知ることは、非常に重要なことである。前者は、化学熱力学に、後者は反応速度学に関連する。 本授業では、化学反応の反応速度を決める因子と反応機構を理解することを目的とし、気相の化学反応に

本授業では、化学反応の反応速度を決める因子と反応機構を理解することを目的とし、気相の化学反応における速度の反応次数依存性および温度依存性について習熟し、化学反応機構に基づいて化学反応の速度論的解析が行えることを達成目標とする

【授業キーワード】

一般反応速度式、一次反応速度式、半減期、二次反応速度式、反応機構、素反応過程、反応中間体、律速段階近似法、定常状態近似法、速度定数、アレニウスの式、活性化エネルギー、頻度因子

【授業内容及び授業方法】

教科書に沿って、化学反応の起こる条件と化学反応の平衡状態に簡単にふれたのち、反応速度の定義に基づき、一次および二次反応の反応速度式の誘導を行う。簡単な化学反応であっても、いくつかの反応中間体を含む素反応過程から構成されることを示す。素反応過程を含む反応を、律速段階法および定常状態法を用いて解析する方法、さらに、反応速度の温度依存性、速度定数、活性化エネルギー、頻度因子の概念、化学反応の分子論的解釈について学ぶ。理解を助けるため、講義の合間に簡単な演習問題を行い、さらに宿題を課す。

【授業項目】

- 1) 化学反応の自発性、化学反応の起こる条件、化学反応の平衡状態
- 2) 化学反応の反応機構 素反応過程
- 3) 反応速度の定義、一般反応速度式、一次および二次反応の反応速度式とその特徴
- 4)素反応過程を含む化学反応の反応速度論、反応中間体、律速段階法による取り扱い
- 5) 定常状態法を用いた反応速度式の誘導
- 6) 反応速度の温度依存性(アレニウスの式)、速度定数、活性化エネルギー、頻度因子の概念
- 7) 化学反応の分子論的解釈、熱以外のエネルギーを加えた場合の反応
- 8) 試験

【教科書】

「物理化学」藤井信行、塩見友雄、泉 生一郎、伊藤治彦、野坂芳雄、尾崎 裕共著 (2000) 朝倉書店この本の第5章「化学反応と反応速度」を中心に行う。

【参考書】

反応速度

(英文)「Chemical Kinetics」Ralph E. Weston, Jr.と Harold A. Schwarz 共著(1972)Prentice-Hall, Inc.の第 一章(印刷して配付する)

【成績の評価方法と評価項目】

講義の最終に行う試験により評価する。

評価項目

- (1) 化学反応の自発性、化学反応の起こる条件、化学反応の平衡状態、化学応速度式の定義を理解し、一般反応速度式、一次および二次反応の反応速度式を誘導できること
- (2) 化学反応を素反応に分ける解析法、反応中間体の概念を理解し、化学反応速度式を定常状態法、および律速段階法により解析できること
- (3) 反応速度の温度依存性(アレニウスの式)、速度定数、活性化エネルギー、頻度因子の概念を習得していること
- (4) 化学反応の分子論的解釈、および熱以外のエネルギーを加えた場合の反応について理解していること

【留意事項】

- 1) 受講者の具備する条件として、反応速度の授業では、化学反応の熱力学の基礎を習得していることが望ましい。
- 2) 講義中に、理解度を高めるため、随時質問する。
- 3) 教科書および参考書(配付資料)を読み、充分に予習してくること。

基礎分析化学 講義 2単位 1学期

Basic Analytical Chemistry

【担当教員】

山田 明文•梅田 実

【教員室または連絡先】

化学経営情報1号棟524室(山田), 化学経営情報1号棟523室(梅田)

【授業目的及び達成目標】

試薬を調製したり、試料を採取したりする際にどのように対応したらよいかについて、分析化学は貴重な指針を与えてくれる。ここでは試料の採取と調製、物質の分離と検出など、溶液化学および分析化学の基礎事項について学ぶ。日常の分析化学的な基礎問題を解決するための基礎知識を身につける。

【授業キーワード】

化学分析、試料採取、試料調製、分離、マスキング、検出、定性分析、定量分析、重量分析、容量分析

【授業内容及び授業方法】

化学分析における基本事項について講述したのち、分離とマスキング、定性・定量分析法および各種の容量分析法、機器分析法について学ぶ。 必要に応じて基礎事項に関する演習を行う。

【授業項目】

第一週 分析化学の基礎概念 第二週 分析化学と化学反応 第三週〜第四週 分析化学と溶液 第五週〜第四週 分析化学と溶液

第七週~第八週 重量分析

第九週〜第十週 容量分析 第十一週〜第十二週 機器分析 第十三週〜第十二週 分析値と誤差、統計処理

第十五週 期末試験

【教科書】

「分析化学」綿抜邦彦 著(1997)サイエンス社

【参考書】

「化学の扉」丸山一典 著(代表)(2000)朝倉書店

【成績の評価方法と評価項目】

1. 成績評価

成績は演習(40%)およびテスト(60%)をもとに評価する。

- 2. 評価事項
 - ・「化学分析」の概念を理解する。
 - ・化学と化学反応、分析に用いる溶液について理解する。 ・分析化学の手法について理解する。

 - ・分析値の意味を理解する。

【留意事項】

「化学実験III」を履修する学生は本科目を履修しておくことが望ましい。 演習の際にはレポート用紙と電卓を持参すること。

講義 2単位 2学期

Basic Physical Chemistry 2

【担当教員】

鈴木 秀松

【教員室または連絡先】

生物1号棟555室

【授業目的及び達成目標】

化学」での物質の理解を、生体と関連する事項に関して、さらに深めることがこの授業の目的である。生体で は特に、各種のイオンをふくむ水溶液が重要な機能を担う.よって、電解質水溶液とその物理化学性質を理解することが達成目標となる.

【授業キーワード】

微量元素,極性分子,ボルツマン分布,平均自由行程,拡散,イオン半径,電解質,水和,生物学的濃縮, コロイド, 分子間相互作用, 理想溶液, 浸透, 容量オスモル濃度, 透析, 等張液, 生理的食塩水

【授業内容及び授業方法】

第1部ではまず原子の構造について、つぎに原子の結合と分子の構造について講述する. さらに放射能とその生物への影響についても述べる. 第2部では分子の集合体である気体と溶液を取り扱う. 主として電解 質水溶液の性質を生物機能と関連させて講述する.

【授業項目】

第1部

- ・測定とSI単位系(教科書の第1章)
- ・エネルギー(第2章)
- ・原子の構造(第3章)
- ・原子の結合,モル(第4,5章) ・原子と放射能(第7章)
- ・放射能と生物(第8章)
- 試験

第2部

- ・物質の三態(第6章)
- ・気体の拡散, 気体分子運動論(第6章)
- ・ボルツマン分布, 水・溶液・コロイド(第10章) ・非電解質と電解質(第10章)
- •束一的性質・浸透(第11章)
- ·束一的性質·透析(第11章)
- 試験

【教科書】

「生命科学のための基礎化学,無機物理化学編」M. M. Bloomfield著,伊藤俊洋ら共訳,丸善. 3200円.

【参考書】

「化学の扉」(ニューテック・化学シリーズ), 丸山一典ら共著, 朝倉書店.「物理化学」(ニューテック・化学シリーズ), 藤井信行ら共著, 朝倉書店.

「イオンの水和」(化学ワンポイント26),大瀧仁志著,共立出版.

【成績の評価方法と評価項目】

2回の試験により成績を評価する.

各章で現れるキーワードや物理量を理解していること. 新たに学んだ概念や法則を把握していること. それらの概念や法則により, いくつかの自然現象を説明できること.

【留意事項】

この講義は、生物機能工学課程のカリキュラムにある「化学IV」と同じである.

Materials Chemistry

【担当教員】

化学系全教員

【教員室または連絡先】

化学経営情報1号棟427室(担当:課程主任/植松敬三)

【授業目的及び達成目標】

基礎科学はどのように先端技術に結びつくのであろうか。先端技術に対して化学はどのように役立っているのか。今までに学んだ、あるいはこれから学ぶ専門分野の内容がどのような形で先端技術に結びつき、われわれの暮らしを豊かにするのかを知ることは、大きくプラスとなるであろう。これらの事柄に対する多くの事例を紹介し、先端技術に果たす化学の役割を明らかにし、材料開発工学を志す者に、自らの進むべき道を知る。 るためのヒントを与えることを目的とする。

【授業キーワード】

半導体、液晶、エネルギー、レーザー、宇宙、セラミックス、医用材料、自動車、都市環境、超伝導、LB膜

【授業内容及び授業方法】

人々の生活と産業を支える科学・技術を、「化学」の立場からわかりやすく説明する。授業は講義形式を主体 とし、化学全般にわたる様々な領域を網羅するように、材料解析工学、無機材料工学、有機材料工学等の種々の分野を専門とする教官により行う。テキストの内容を手かがりとし、適宜OHP等を用いて担当教官の研究 分野における最新の研究成果をトピックスを交えて概説する。

【授業項目】

- 1. 産業と化学-序論 2. 半導体を支える化学
- 3. 情報・通信を支える化学
- 4. エネルギーを支える化学 5. レーザーを支える化学
- 6. 宇宙を支える化学
- 7. セラミックスを支える化学
- 8. 医療を支える化学
- 9. 自動車を支える化学
- 10. 快適な都市環境を支える化学
- 11. 超伝導を支える化学
- 12. 未来を支える化学

上記の内容より、担当教官の研究分野における最先端の研究成果・トピックスを交えて15回の講義を行う。

【教科書】

「産業を支える化学(第2版)」長岡技術科学大学化学教育研究会編、内田老鶴圃

【成績の評価方法と評価項目】

1.評価方法

講義内容のうち、興味を持ったトピックスについてレポートの提出を求め、そのレポートに基づいて評価する

授業項目1~12に関連する専門分野に関する基礎的知識を習得し、その内容を理解していること。

測量学I 講義 2単位 1学期

Engineering Surveying 1

【担当教員】

力丸 厚

【教員室または連絡先】

環境システム棟655室

【授業目的及び達成目標】

測量学における地物の3次元位置を計測する基本技術を学習し、計測された測量データの解析処理手法を 理解する。

【授業キーワード】

距離測量,トラバース測量,水準測量,平板測量,リモートセンシング,GPS,トータルステーション,GIS

【授業内容及び授業方法】

地物の3次元位置を計測する手段の基本としての距離測量, 角測量, 高低差測量の計測手法を講義し, 測 量データの解析処理手法は講義と演習を交えておこなう。また,最新の測量技術として衛星リモートセンシング,GPS,トータルステーション,GIS等に関しても概要を講義する。

【授業項目】

- 第1週 測量学の基本 測量技術の基礎概念と測量学の沿革

- 第2週 距離測量の概念と距離測量の種類,方法,補正計算方法 第3週 光波測距の原理と特性,誤差要因 第4週 水準測量における高さ基準値の基本概念,測定手法の説明

- 第5週 水準測量における筒さ塞準値の基本概念,例定子伝の説明 第5週 水準測量の計算法,スタジア測量 第6週 角測量の基本概念,トランシットによる角観測方法の説明, 第7週 トラバース測量の計算法の説明 角調整,距離調整,方位角 第8週 トラバース測量の計算法の説明 緯距経距,合緯距合経距 第9週 平板測量の方法

- 第10週 各種面積計算手法, 断面積計算, 土量計算手法
- 第11週 誤差と精度 測量誤差の概念・種類, 測量精度の算定と評価法
- 第12週 トータルステーションとデジタル平板測量手法
- 第13週 RTK.GPSの原理と実状, 測量からGISへの展望 第14週 授業総括 全体復習 第15週 期末試験

【教科書】

指定なし

【成績の評価方法と評価項目】

試験による。

【留意事項】

測量士補の資格取得上の必要教科である。

測量学実習I 実習 1単位 1学期

Surveying Practice 1

【担当教員】

力丸 厚

【教員室または連絡先】

環境システム棟655室

【授業目的及び達成目標】

測量学Iで学習した手法に即して, 学内で地物の位置を測量し, 得られたデータの解析処理までの実習をお こなう。

【授業キーワード】

距離測量,トラバース測量,水準測量,平板測量,トランシット,レベル

【授業内容及び授業方法】

1クラスを4グループに分割し、各グループごとに実習課題を達成する。 実習課題は、距離測量、各測量、水準測量、平板測量で各課題は、測量による外業と観測データをとりまと める内業をおこない、内業ではパソコンによる解析処理の実習を含んでいる。

【授業項目】

第1週 距離測量1 鋼巻尺による測量実習と補正計算

第2週 距離測量2 光波測距儀による測量実習第3週 距離測量3 各種距離測量の精度と補正

第4週 水準測量1 レベルによる高低差の測量実習

第5週 水準測量2 レベルによるスタジア測量

第6週 水準測量3 水準測量の調整計算

第7週 角測量1 トランシットの構造と操作法の学習

第8週 角測量2 第9週 角測量3

トランシットによる角測量実習 (選点・測角) トランシットによるトラバース測量実習 (選点・測角) トランシットによるトラバース測量実習 (距離・方位角)

第10週 角測量4

トータルステーションによるトラバース測量実習 第11週 角測量5

トラバース測量結果の調整計算 第12週 角測量6

第13週 角測量7 第14週 平板測量 トラバース計算(緯距経距,合緯距合経距,平面図展開)

放射法,道線法による平板測量実習

第15週 実習総括 測量結果の総括と観測資料・計算資料の整理

【教科書】

指定なし

【成績の評価方法と評価項目】

授業への出席を重視する。各課題の成果内容を評価する。授業中に機器取り扱い能力に関する審査をおこ なう。

【留意事項】

測量士補の資格取得上の必要教科である。

環境・建設設計製図!

演習 1単位 2学期

Civil and Environmental Engineering Design and Drawing 1

【担当教員】

細山田 得三・小松 俊哉・(犬飼 直之・高田 晋)

【教員室または連絡先】

機械建設1号棟807室(細山田),815室(犬飼),712室(高田) 環境システム棟554室(小松)

【授業目的及び達成目標】

建設工学および環境システム工学に関わる建設構造物等の形状や配置を図面で表現する手法をトレースを実習することによって身に付けるとともにそのためのCADの基本操作を習得することを目的とする。受講者には教官より毎回、図面作成に関する資料が提供される。それをもとに実際に図面(製図あるいはCAD)を作 成してその成果によって達成度が評価される。

建設工学課程学習教育目標(G),(H)に該当しており、この目標に則した評価を行う。

【授業キーワード】

土木製図、トレース、CAD

【授業内容及び授業方法】

学生は教官から提示された2つの課題について実習する。これらは前半と後半に分かれており、前半は資料にもとづく平面のトレース図の作成であり、自筆で課題を作成する。後半は、まずCADの基本操作を練習し、基本的な図形や文字の入力方法を身に付ける。次いでCADによって建設構造物を三角法で表現した図面 を作成する。

作画指導についてTAを予定している

【授業項目】

第1週 設計製図の作成方法について説明 第2-7週 平面図面情報に基づく作画実習と中間審査 第8週 CADの基本操作とCADを用いた製図の基礎

第9週 CADの基本操作の練習

第10-15週 課題の制作

【教科書】

教官が作成した作画法に関する資料を配布する。

土木製図 -基礎土木工学講座-、コロナ社(友永、笹戸、長尾、中城、南條、畠中共著) 設計者のためのCAD/CAM、産業図書(望月、光成共著)

【成績の評価方法と評価項目】

成果として提出された図面を用いて評価する。

【留意事項】

1年次に開講している「図学」を履修していることが望ましい。 2年1学期に開講している「測量学」」および「測量学実習」」を習得していることが望ましい。 建設工学実験Ⅰ 実験 1単位 2学期

Civil Engineering Laboratory 1

【担当教員】

丸山 久一・杉本 光隆・下村 匠

【教員室または連絡先】

事務局棟副学長室(丸山),機械建設1号棟808室(杉本),機械建設1号棟703室(下村)

【授業目的及び達成目標】

コンクリート工学および地盤工学についてそれぞれ以下の項目を授業目的及び達成目標とする.

- ・コンクリート工学実験
- (1)コンクリートの構成材料の特性を理解すること
- (2)セメントの水和反応と強度発現を検証すること
- (3)配合設計法とフレッシュコンクリートのワーカビリティー評価法を修得すること
- (4)高流動コンクリートを製造し、その特性を理解すること
- (5)コンクリートの強度特性を理解すること
- (6)コンクリートおよび鉄筋の応力ーひずみ関係と弾性係数を測定すること
- (7)鉄筋コンクリートはりの力学的挙動を理解すること
- •地盤工学実験
- (1)土の物理定数を測定できるようにする
- (2) 塑性図を理解し、日本統一土質分類法で土を分類できる(3) 透水試験の原理を理解し、砂質土の透水係数を測定できる
- (4) 締固め試験より最適含水比を求め、土の締固め特性を理解する
- (5) 圧密試験より圧密定数を測定し、粘土の圧密量や圧密時間を計算する
- (6) 一面せん断試験装置を用いて、土の強度定数を測定できる
- (7)砂の内部摩擦角とダイレタンシーの関係について理解する

【授業キーワード】

・コンクリート工学実験

建設材料,コンクリート,配合設計,フレッシュコンクリート,強度特性,鉄筋コンクリート

•地盤工学実験

土質力学, 土の分類, 締固め, 透水, 圧密, 強度特性

【授業内容及び授業方法】

それぞれの実験項目に定められた内容の実験を各週毎に行う. 実験後定められた期日までにレポートを 提出する.

【授業項目】

- ・コンクリート工学実験
- 第1週 コンクリート材料
- 第2週 コンクリートの配合設計、コンクリートの打込み
- 第3週 高流動コンクリート 鉄筋コンクリートはりの製作
- 第4週 コンクリートの各種強度試験
- 第5週 コンクリートと鉄筋の応力ーひずみ関係 第6週 鉄筋コンクリートはりの曲げ試験
- •地盤工学実験
- 第1週 土粒子の密度試験, 土の粒度試験
- 第2週 粘土の塑性試験,液性試験
- 第3週 定水位透水試験,砂の最大最小間隙比試験
- 第4週 土の締固め試験
- 第5週 粘土の圧密試験
- 第6週 砂の一面せん断試験

【参考書】

・コンクリート工学実験

特に指定しない. 「コンクリート工学」の教科書、参考書を参考にすればよい.

地盤工学実験

(社)地盤工学会編:「土質試験 基本と手引き」(地盤工学会) (社)地盤工学会編:「土質試験の方法と解説」(地盤工学会)

【成績の評価方法と評価項目】

レポート100% 実験を欠席した場合は不合格.

【留意事項】

・コンクリート工学実験

本科目はコンクリート工学と同時進行で行われ、講義で理解した理論を実験で体験・検証する作業を繰り返し行う。コンクリート工学を受講しておくことが望まれる.

なお、コンクリート工学の講義中に課される宿題は本科目の事前課題となる。

•地盤工学実験

本科目は土質力学と同時進行で行われる. 講義では主に実験についての理論的背景を解説し, 実験では実際の測定方法について学ぶ.

Soil Mechanics

【担当教員】

豊田 浩史

【教員室または連絡先】

機械建設1号棟705室

【授業目的及び達成目標】

土質力学の基礎を学ぶ. 土質力学における土の取り扱い方に慣れ親しむようにする. 内容は深いところまで 掘り下げずに、短時間で土質全般の知識が得られるように努める、問題解決に応用できる基礎知識を身に つける.

- 1. 土を工学的に分類することができる。
- 2. 土の全応力, 有効応力, 間隙水圧を理解する.
- 3. フローネットにより透水量を算定できる.
- 4. 一次元圧密理論を理解し、沈下量が計算できる. 5. 有効応力と土の破壊規準の関連性について理解する.
- 6. 極限解析(土圧, 斜面安定, 支持力)の基本的考え方を理解する.

【授業キーワード】

土質力学, 力学一般, 透水, 圧密, 破壊規準, 極限解析

【授業内容及び授業方法】

基本的に板書により講義を進め、理解を助けるための資料として、プリント等をその都度配布する. 計算問題 については宿題を課し、その使用方法について理解が深められるようにする.

【授業項目】

- 1. 土の組成 (2调)
 - 十の基本的物理量、十のコンシステンシー、十の分類法
- 2. 有効応力 (1週)
 - 地盤内における全応力、間隙水圧、有効応力の考え方、地盤内応力
- 3. 透水 (2週)
 - ダルシー則,透水試験,フローネット,透水力
- 4. 圧密 (2週)
 - 一次元圧密理論, 圧密試験, 沈下量の計算, 二次圧密
- 5. せん断 (4週)
 - モールの円,破壊規準,せん断試験,各種せん断特性
- 6. 土圧 (1週)
- 土圧の定義, ランキン土圧, クーロン土圧 7. 安定解析 (1週)
- - 無限斜面,円弧すべり,分割法
- 8. 支持力(1週)
 - 破壊モード, すべり線解法, 杭の支持力
- 9. 期末試験 (1週)

【教科書】

杉本光隆, 河邑眞, 佐藤勝久, 土居正信, 豊田浩史, 吉村優治:「土の力学」(朝倉書店)

【参考書】

河上房義:「土質力学」(森北出版)

【成績の評価方法と評価項目】

レポートおよび平常点30%, 期末試験70%により成績評価を行う. レポートでは計算問題を, 期末試験では 理論を応用問題に適用できるかを問う. 期末試験では筆記用具以外持込み不可とする.

【留意事項】

本科目では, 土質力学に関する最低限の基礎知識を学ぶ. 土質力学に関する詳しい理論的背景や応用問 題は、地盤工学I(3年1学期)と地盤工学II(3年2学期)で取り扱う。

Hydraulics 1

【担当教員】

細山田 得三

【教員室または連絡先】

機械建設1号棟807室

【授業目的及び達成目標】

初学者に対して水の力学の成り立ちおよびその解析手法を習得させることを目的とする。特に流体の連続式 、ベルヌイの式、運動量保存式を連立させることによって流体を解析する手法は初等的な水理学の中心を構成している。これらを用いて水理学の諸問題を解く力をつけることを達成目標とする。 建設工学課程学習教育目標(E)に該当しており、この目標に則した評価を行う。

【授業キーワード】

水、流体、運動方程式、流体力学、河川、海岸、海洋

【授業内容及び授業方法】

授業の内容:水の流れを理解するため、その基礎方程式である流れの連続方程式がどのように導かれるか 授業の内容:水の流れを埋解するため、その基礎力程式である流れの連続力程式からいように与かれなかについて理解する。同様に、質点の力学の延長としての、運動量保存則の導出過程を学ぶ。これらの方程式を用いて、ベルヌイの定理を導きその応用例を学ぶ。水の流れのもう一つの解析手法である運動量の原理とその応用について学ぶ。流れには、層流と乱流の二つがあることを理解し、円管路におけるそれぞれの流速分布の算出法について理解する。ベルヌイの定理を開水路流に適用し、非粘性流体の場合の非一様な断面での水面形を求める方法と限界水深の水理学的な意味を理解する。実在流体の簡便解析法である 摩擦を考慮したベルヌイの式を導き、その応用としての水面形の解析手法を理解する。

授業方法:本授業は、水の力学について大学で初めて勉強する人を対象としている。従って、始めに水の流れの様子をコンピュータシミュレーションした結果を観察し、その動態について概略を理解する時間を設けている。また、水理学の他の学問分野との関係についても概略説明を行なう。講義中で記述して、理解を助けるため、 めのシミュレーション表示を行なう。講義は、OHP,液晶プロジェクタ、板書を用いながら進める。OHP,液晶プロジェクタの内容は資料として配布する場合がある。講義の始めに前回の講義内容に関する小テストを実施 する。

【授業項目】

- 第1週 水理学への導入 静水圧の力学
- 第 2週 静水圧の力学
- 第 3週 水の運動と加速度、流れの運動学
- 第 4週 水の流れの基礎方程式
- 第5週 ベルヌイの定理
- 第6週 ベルヌイの定理演習
- 第 7週 運動量方程式
- 第8週 運動量方程式の演習 第9週 等流と平均流速公式
- 第10週 開水路の水面形の基本原理
- 第11週 層流と乱流 第12週 摩擦損失を考慮したベルヌイの式 第13週 管水路流れと流速分布
- 第14週 摩擦損失と管水路に関する演習
- 第15週 最終試験
- 各講義の翌週に短時間の小テストを行う。講義内容をよく復習して理解しておく必要がある。

【教科書】

「水工学の基礎と応用」早川典生著, 彰国社

【参考書】

「水理学」日野幹雄 丸善

「水理学」」椿東一郎 森北出版

教官が作成したCDROMおよびその印刷物(簡易製本)

【成績の評価方法と評価項目】

以下のような重みで成績を評価し、60点以上を合格とする。

小テスト40%

定期試験60%

- 1. 小テストの答案が提出されていない者を欠席とみなす。
- 2. 小テストは電卓のみ持込可とする。
- 3. 講義の際、講義の間違いを指摘したり、教官の質問に積極的に答えた人は評価する。
- 4. 学習態度が著しく悪い場合、減点の対象となる。
- 5. 定期試験では電卓のみ持込可とする。
- 6. 教官のe-mail rng@nagaokaut.ac.jp

【留意事項】

受講者の具備する条件:特になし。

- 2. 理解困難な点、不明な点がある場合には、授業中に質問すること。授業時間以外の質問は、随時受け付けるが、電子メール等でも受け付ける。アドレス講義中に配布資料によって知らせる。
 3. 板書や講義の内容に誤りを発見した場合、随時指摘を受け付ける。その場合、その学生の成績評価に有利に考慮される。
 4. 本教科は、水理学II、建設工学実験II、応用水理学、海岸・海洋工学へ接続する。
 5.CDROMを回覧するため大学の学生用パソコンを使えることが望ましい。
 6.教室として大学院講義室(機械建設1号棟8階)を利用する場合がある。その場合は事前に通知する。

【参照ホームページアドレス】

http://rng.nagaokaut.ac.jp/suiri/ (学内からのみ)

建設工学テーマセミナー

演習 1単位 1学期

Civil Engineering Theme Seminar 1

【担当教員】

建設系全教員

【授業目的及び達成目標】

担当教官より提示される建設工学に関するいくつかの特定テーマを,期間を区切って全て探求し,そのこと を通じて

- (1) 建設工学を学ぶ動機を啓発し、将来を担う建設技術者としての自覚を芽生えさせること、 (2) 当該テーマに関する工学的興味と専門的知識を深めること、および
- (3) 工学的問題意識を持ち、自律的に問題解決に取り組む能力を身につけること、

を目的としている。

テーマについては、学期はじめのガイダンスの際に提示される。

【授業キーワード】

建設工学, 土木工学, 社会基盤工学, 自己学習, 技術者倫理

【授業内容及び授業方法】

複数の教官よりテーマが提示されることになる。テーマの内容は多岐にわたっており、演習や自分で調査を 行うものも含まれている。

学生を1グループ5~10人となるように,グループ分けを行い,グループごとに担当教官の指示に従い演習 を行う。学期の途中にグループとテーマの交替を行う。ただし、履修者の数が少ない場合は、グループ分けは行わずに、履修者全員が一つのグループとして全てのテーマを順次取り扱っていく。

【授業項目】

各教官により, 毎年異なったテーマが提示される。過去の実績, 最新の研究成果, 社会情勢をふまえ, 学 生が興味を持って取り組めるように工夫された,建設工学,環境システム工学に含まれる適切なレベルの調 査・研究テーマがいくつか提示される。

【教科書】

特に指定しない.

【参考書】

特に指定しない.

【成績の評価方法と評価項目】

セミナーに出席して課題に取り組むことが基本であるが、宿題やレポート等の提出物の成果も考慮して成績 の評価を行う。

【留意事項】

これから専門科目を学習していくうえでの基礎となる事項を,広範囲にわたって少人数で学生のレベルに 合わせて学習できるので、履修することが強く推奨される。

Basical Environment Planning

【担当教員】

松本 昌二・中出 文平

【教員室または連絡先】

環境システム棟365室(松本)、環境システム棟353室(中出)

【授業目的及び達成目標】

環境社会工学大講座で展開する教育及び研究に関して、その基本的な部分を紹介するとともに、環境計画に関する基本的な内容を理解する。主題として持続可能な都市の計画とマネジメントを取り上げ、都市・地域と環境の関わり合いに関する計画の基礎を修得する。

【授業キーワード】

環境計画、持続可能な都市

【授業内容及び授業方法】

二教官がオムニバスで担当する。

【授業項目】

- 1.現状:都市・地域の活動がもたらす環境への影響
 - (1)市街地の拡大と環境
- (2)ヒートアイランドと大気汚染 2.手法:環境に関する原理と手法
 - (1)持続可能性の概念、持続可能な開発の原理、環境管理計画
 - (2)環境アセスメント、経済的手法
 - (3)環境指標
- (3)未発音器 3.計画:持続可能な計画とマネジメント (1)エコロジカルな計画の考え方、空間計画 (2)資源、エネルギー、廃棄物 (3)交通accessibility、交通と土地利用

【教科書】

特になし

【成績の評価方法と評価項目】

演習、計画課題のレポート、および期末試験によって評価する。

【留意事項】

第3学年開講と環境計画論と同時開講である

【参照ホームページアドレス】

http://urban.nagaokaut.ac.jp/~plan 都市計画研究室

応用力学Ⅰ 講義 2単位 1学期

Applied Mechanics 1

【担当教員】

長井 正嗣

【教員室または連絡先】

機械建設1号棟702室

【授業目的及び達成目標】

応用力学、構造力学の基礎を習得する。とくに、力のつり合い、断面諸量、応力、静定梁、静定トラスの解析法を習得する。

【授業キーワード】

力学、解析、構造

【授業内容及び授業方法】

板書、ビデオ、プリントを用いて講義する。

【授業項目】

- 第1週 力学と実構造物、設計とのかかわり
- 第 2週 概説(力学、構造、設計)
- 第 3週 力とモーメント
- 第4週 力のつり合い
- 第 5週 応力とひずみ
- 第6週 引張、圧縮、せん断
- 第7週 平面応力状態第8週 モールの応力円

- 第 9週 断面諸量(1) 第10週 断面諸量(2) 第11週 静定梁の曲げモーメント、せん断力
- 第12週 静定梁の断面力の影響線
- 第13週 静定梁の曲げ及びせん断応力
- 第14週 静定トラスの軸力と影響線 第15週 期末試験

【参考書】

崎元達郎、「構造力学[上]」、森北出版

【成績の評価方法と評価項目】

期末試験(100%)。ただし、出欠をとり、欠席日数に応じて試験結果の成績からマイナスする。

【留意事項】

本教科はさらに「応用力学II」に継続、発展する。

応用力学演習Ⅰ 演習 1単位 1学期

Exercises in Applied Mechanics 1

【担当教員】

長井 正嗣

【教員室または連絡先】

機械建設1号棟702室

【授業目的及び達成目標】

講義内容に応じた演習問題を提出させ、回答させることにより、応用力学I内容の理解を深める。

【授業キーワード】

力学、解析、構造

【授業内容及び授業方法】

授業内容及び授業方法 学生に対し、板書で回答、説明させ指導する。 あわせて、理解を深めるために講義内容を再度説明する。

【授業項目】

- 第 1週 力学一般(1) 第 2週 力学一般(2)
- 第 3週 力とモーメント
- 第4週 力のつり合い
- 第 5週 応力とひずみ 第 6週 引張、圧縮、せん断
- 第7週 平面応力問題第8週 モールの応力円

- 第 9週 断面諸量(1) 第10週 断面諸量(2) 第11週 静定梁の曲げモーメント、せん断力(1)
- 第12週 静定梁の曲げモーメント、せん断力(2)
- 第13週 静定梁の曲げ及びせん断応力
- 第14週 静定トラスの軸力(1)
- 第15週 静定トラスの軸力(2)

【参考書】

崎元達郎、「構造力学[上]」、森北出版

【成績の評価方法と評価項目】

レポート(100%)。ただし、出欠をとり、欠席日数に応じて成績からマイナスする。

【留意事項】

なし

Applied Mechanics 2

【担当教員】

宮木 康幸

【教員室または連絡先】

機械建設1号棟709室

【授業目的及び達成目標】

安全な土木構造物を造る際に必要となる力学の基礎を,骨組構造物(はり,柱,ラーメン,トラス)を対象として,

- (1)変形や破壊に関する力学的性質の基本を理解すること
- (2) はり、ラーメン、トラスの変形量の手計算による求め方を修得すること
- (3) 仮想仕事の原理・ポテンシャルエネルギー極小の原理・最小仕事の原理などの構造解析における基本原理を理解すること。
- (4) 不静定骨組構造物の支点反力や断面力の手計算による求め方を修得すること。を目標とする。

【授業キーワード】

力学一般, 構造解析, 設計論, 鋼材, コンクリート, 複合材料

【授業内容及び授業方法】

板書,配布資料を用いて講義する。

【授業項目】

- 第 1週 はりの変形(1)曲げモーメントによるたわみの基本式の誘導とその解法
- 第2週 はりの変形(2)モールの定理とその解法
- 第 3週 圧縮部材の解析(1)圧縮部材の破壊形態と短柱の断面の核
- 第 4週 圧縮部材の解析(2)長柱の弾性座屈
- 第 5週 単純ねじり解析(1)基本式の誘導と円断面のねじり変形
- 第6週 単純ねじり解析(2)任意形状の薄肉閉断面と開断面のねじり剛性
- 第7调 中間試験
- 第8週 構造解析における基本原理(1)重ね合わせの原理と影響線の利用
- 第9週 構造解析における基本原理(2)外力仕事とひずみエネルギー
- 第10週 構造解析における基本原理(3)仮想仕事の原理とエネルギー極小の原理
- 第11週 構造解析における基本原理(4)単位荷重法
- 第12週 構造解析における基本原理(5)相反作用の原理
- 第13週 応力法による不静定骨組構造の解析(1)単位荷重法の応用
- 第14週 応力法による不静定骨組構造の解析(2)3連モーメントの定理と応用
- 第15週 期末試験

【教科書】

特に指定しない。2~3回程度の講義内容をまとめた資料を授業の始めに配布する。

【参考書】

特に指定しない。

【成績の評価方法と評価項目】

中間試験と期末試験の定期試験結果に、出席点15%、レポート10%を加算して成績評価を行う。 なお、出席点は、授業始めの点呼に遅れた場合には遅刻として半減する。 また、レポートは、定期試験で「間違った」または「できなかった」問題について提出するものである。 定期試験は、配布資料・ノート持込み不可、計算機持込み可で行う。

【留意事項】

本科目の講義内容の理解を深めるために,「応用力学演習II」を併せて受講することが望ましい。 また,本科目は,3年次に開講される「構造解析学I」の基礎となる。 応用力学演習II 演習 1単位 2学期

Exercises in Applied Mechanics 2

【担当教員】

宮木 康幸

【教員室または連絡先】

機械建設1号棟709室

【授業目的及び達成目標】

「応用力学II」の講義内容の理解を深めることを目的とし、手計算によって、

- (1) はり、ラーメン、トラスの変形量を微分方程式、モールの定理、カステリアーノの定理、単位荷重法などを用いて求める方法を修得すること。
- (2) 各種断面形状の短柱の断面の核,トラス部材の座屈荷重,ねじり剛性などを求める方法を修得すること。 (3) 不静定骨組構造物の支点反力や断面力を微分方程式,単位荷重法,3連モーメントの定理などを用いて求める方法を修得すること。

を目標とする。

【授業キーワード】

力学一般, 構造解析, 設計論, 鋼材, コンクリート, 複合材料

【授業内容及び授業方法】

当日の「応用力学II」の講義内容に即した演習問題を出題し、受講者各自に解答させる。 さらに、毎週レポート課題を与え、翌週に提出させるとともに、受講者がレポートの解答と説明を黒板を用い て行い、教官及び他の受講者からの質問を受ける。

【授業項目】

- 第1週 はりの変形(1)微分方程式によるたわみの解法,1学期の復習問題
- 第2週 はりの変形(2)モールの定理による解法,1学期の復習問題
- 第 3週 圧縮部材の解析(1)短柱の断面の核
- 第 4週 圧縮部材の解析(2)長柱の弾性座屈荷重
- 第 5週 単純ねじり解析(1)円断面のねじり変形
- 第6週 単純ねじり解析(2)任意形状の薄肉断面のねじり剛性,

第1週~第5週の復習問題

- 第 7週 「応用力学II」の中間試験問題
- 第8週 構造解析における基本原理(1)重ね合わせの原理と影響線の利用
- 第9週 構造解析における基本原理(2)ひずみエネルギーの算定
- 第10週 構造解析における基本原理(3)仮想仕事の原理とエネルギー極小の原理の利用
- 第11週 構造解析における基本原理(4)単位荷重法の利用
- 第12週 構造解析における基本原理(5)相反作用の原理の利用
- 第13週 応力法による不静定骨組構造の解析(1)単位荷重法の応用
- 第14週 応力法による不静定骨組構造の解析(2)3連モーメントの定理の利用, 第8週~第14週の復習問題

第15週 「応用力学II」の期末試験問題

【教科書】

特に指定しない。

【参考書】

特に指定しない。

【成績の評価方法と評価項目】

レポート80%、出席点と授業での質疑対応20%により成績評価を行う。

【留意事項】

本科目は「応用力学II」の講義内容の理解を深めるためのものであり、「応用力学II」を併せて受講することが望ましい。

Concrete Engineering

【担当教員】

丸山 久一·下村 匠

【教員室または連絡先】

事務局棟副学長室(丸山)、機械建設1号棟703室(下村)

【授業目的及び達成目標】

コンクリートおよびコンクリート構造物について、下記の事項の修得を目的とする。これらの事項に関して、3、4年時にさらに高度な学習を行うための基礎学力を身につけることを、本講義の達成目標とする。 (1)コンクリートの構成材料とその役割

- (2)コンクリートの種々の性質とその機構
- (3)コンクリートの配合設計と施工
- (4)鉄筋コンクリート構造の耐荷性状
- (5)コンクリート構造物の耐久性

【授業キーワード】

コンクリート、配合設計、施工、耐久性、力学性能、鉄筋コンクリート構造

【授業内容及び授業方法】

各項目ごとに講義を進める。必要に応じて、教科書の参照、プリント配布、プロジェクター、OHPの利用を行 う。必ずしも教科書に沿って話を進めないが、授業で扱った事項の関連部分について、教科書あるいは参考書を読み、知識と理解を深めることが望ましい。コンクリートの配合設計、鉄筋コンクリートの耐荷性状につい ては、計算問題の演習を行う。

【授業項目】

- 第1項 コンクリートとコンクリート構造物に関する概論
- 第2項 コンクリートの構成材料とその役割
- 第3週 セメント化学、水和反応、コンクリートの組織構造
- 第 4週 フレッシュコンクリート
- 第 5週 コンクリートの配合設計法Ⅰ
- 第6週 コンクリートの配合設計法II
- 第7週 コンクリートの施工、養生、初期欠陥
- 第8週 高流動コンクリート
- 第9週 硬化コンクリートの力学的性質(強度)
- 第10週 鉄筋と硬化コンクリートの力学的性質(応力ーひずみ関係)
- 第11週 鉄筋コンクリート構造物の耐荷性状の概要 第12週 鉄筋コンクリート構造の力学的挙動の計算モデル
- 第13週 コンクリート構造物の劣化現象と耐久性Ⅰ
- 第14週 鉄コンクリート構造物の劣化現象と耐久性II
- 第15週 期末試験

【教科書】

小林一輔 著:「最新コンクリート工学 第5版」(森北出版)

【参考書】

岡村 甫、前田詔一著:「鉄筋コンクリート工学 三訂版」(市谷出版)

河野 清、田澤栄一、門司 唱著:「新しいコンクリート工学-訂正版-」(朝倉書店)

【成績の評価方法と評価項目】

レポート20%、期末試験80%として、成績を評価する。

期末試験では、A4の用紙1枚に自筆のメモと電卓の持込みを認める。

本科目は、建設工学実験」と同時進行で行う。講義で学んだ事項を実験で体験・検証する作業を繰返し行 う。講義で課される宿題等は、建設工学実験Iでの事前課題ともなる。

【参照ホームページアドレス】

http://concrete.nagaokaut.ac.jp/

建設構造 I 講義 2単位 2学期

Structural Engineering 1

【担当教員】

鳥居 邦夫

【教員室または連絡先】

機械建設1号棟706室(内線:9606, E-mailアドレス: willy@vos.nagaokaut.ac.jp)

【授業目的及び達成目標】

土木構造物、特に鋼構造の設計及び建設法を修得させる。

【授業内容及び授業方法】

鋼構造物、特に鋼橋に用いられる熔接構造用鋼材の化学的、物理的特質について学ばせ、これを構造材料に用いるときの技術的配慮がどの性質を考慮したものであるかを理解できるようにする。本学の1年入学者は3年において高専卒業者に合流するため、2年間でその水準を高専卒業程度にまで引き揚げることが求められるから、通常の一般概論ではなく、かなり踏み込んだ内容に立ち至ることが重要である。この理由から、少々程度が高過ぎると感じられる教科書を採用し、これにのっとった授業を進めて行く。

【授業項目】

- 1)概説
- 2)構造材料としての鋼材
- 3)鋼材の接合
- 4)部材の設計
- 5)鋼構造物の施工

【教科書】

鋼構造学 コロナ社 著者:伊藤 学

【成績の評価方法と評価項目】

出席点:50 テスト:50

【留意事項】

本講義を受講するには応用力学の知識が不可欠である。前期の「応用力学」の講義を受講しておくことが望ましい。

環境数理基礎 講義 2単位 1学期

Basic Mathematics and Statistics for Environmental Study

【担当教員】

佐野 可寸志・力丸 厚・陸 旻皎

【教員室または連絡先】

環境システム棟366室(佐野),655室(力丸),653室(陸)

【授業目的及び達成目標】

高校数学および数学IA, Bで学習した数学・統計学が、環境システムのモデル化や解析においてどのように 利用するのかを、具体的な事例を通して理解し、その解析手法、計算手法を演習により取得する。

【授業キーワード】

データ解析、モデル化、回帰分析、数値計算

【授業内容及び授業方法】

講義項目に掲げる基礎的事項を講義するとともに、実際の問題にどのように応用するのか、 具体的な例題をどのように解析するのかを、演習により体験する。

【授業項目】

- 1. 実験・調査データの統計解析(担当:中出文平、力丸 厚、佐野可寸志)
 - (1)環境データの取り扱い
 - (2) 母集団とサンプリング、データ
 - (3)確率分布、期待値、分散
 - (4)相関分析
- (5)回帰分析(推定と検定) (6)回帰分析(推定と検定)
- (7)行列による表現
- 2. 微分方程式モデルの数値計算(担当:陸 旻皎)
 - (1)環境システムのモデル化
 - (2) 微分方程式のたて方
 - (3) 微分方程式の近似計算

【教科書】

標準的な統計学・回帰分析の教科書を指定する。統計演習、数値計算については、参考資料を配付する。

【成績の評価方法と評価項目】

演習レポート、中間試験、期末試験によって成績評価する。

【留意事項】

選択科目であるが、環境システム工学課程2学年は必ず履修すること。

環境システム工学実験!

実験 1単位 2学期

Environmental Systems Engineering Laboratory 1

【担当教員】

環境システム工学課程全教員

【教員室または連絡先】

環境システム棟466,467,553,554,569,571,667,668 ほか

【授業目的及び達成目標】

種々の環境汚染物質および環境質の検出・同定・分析評価方法、モニタリング方法に関する基礎実験及び 考究を行う。

【授業キーワード】

炭酸ガス、酸性雨、溶存酸素、酸化還元反応、微生物、顕微鏡観察、葉緑素、透析、光吸収、赤外線、粉体 スラグ

【授業内容及び授業方法】

全体を10班に分け、以下に挙げた実験項目などを各班毎週交互に実験する。実験結果を分析・解析、考察 してレポートを提出する。

【授業項目】

- (1)大気中の二酸化炭素濃度測定
- (2) 二酸化炭素の水への溶解と解離平衡
- (3)物質移動計測
- (4)酸化還元滴定
- (5) 顕微鏡観察
- (6) バクテリア培養
- (7) 光合成色素に及ぼす酸性雨の影響 (8) 吸収スペクトルと透析平衡
- (9)赤外線検出センサー
- (10) 粉体粒子を用いた充填モデル

【教科書】

専用の実験テキストを配布する。

【参考書】

個々の実験テーマ毎に指示する。

【成績の評価方法と評価項目】

各実験に出席した上で、提出された課題レポート内容により成績評価を行う。

【留意事項】

本実験開始前にテキストを配布し、班分け、実施実験テーマ順番、実験安全などのガイダンスを行う。

環境化学基礎 講義 2単位 1学期

Basic Environmental Chemistry

【担当教員】

佐藤 一則・解良 芳夫・小松 俊哉

【教員室または連絡先】

環境システム棟466室(佐藤)、環境システム棟667室(解良)、環境システム棟554室(小松)

【授業目的及び達成目標】

地球温暖化現象、酸性雨、大気汚染などの環境問題を化学的な見地から理解することを目的とし、そのために必要な基礎的な化学知識の修得を目標とする。具体的には、物質を構成する原子・分子の構造と、それらの性質を理解する。さらに物質の性質と状態変化、化学反応、有機化合物などに関する基礎的事項について学習する。

【授業キーワード】

原子構造、周期表、モル、化学式、物質の三態と変化、固体・液体・気体の性質、化学反応式、酸と塩基、中和と塩、酸化還元、ファラデーの法則、元素の性質、金属元素、イオン、有機化合物

【授業内容及び授業方法】

講義および演習を通して、物質の化学的理解を深める。重要な自然法則については、討議方式も試みる

【授業項目】

第1週〜第3週 物質の構成 第4週〜第6週 物質の状態 第7週 演習と試験(第1〜第6週分) 第8週〜第10週 化学反応 第11週〜第13週 物質の性質と有機化合物 第14週 演習と試験(第8週〜第13週分) 第15週 期末試験

【教科書】

特に指定しない。配布するプリントを使用する。

【成績の評価方法と評価項目】

試験、演習、および授業への積極的貢献度による総合評価

生物機能工学基礎実験Ⅰ

実験 1単位 1学期

Basic Experiments on Bioengineering 1

【担当教員】

生物系全教員

【教員室または連絡先】

担当代表・本多元: 内線:9421、メール:hhonda@vos、教官室:生物棟657室

【授業目的及び達成目標】

1.授業目的

生物機能工学第2学年の必修科目に含まれる化学・物理・生物に関する講義科目に含まれる重要分野のう ち、理解度が十分でない項目について物理的・化学的基礎の実験を行い、実験系学科としての基礎教育の 充実を図る。

生体などの、水溶液中の化学反応に関する基礎的な技術を身に付ける。

生体中の電気に関わる現象を体験し、理解を助ける。

【授業キーワード】

中和滴定、比色定量、緩衝液、反応速度、酸化還元、電気回路

【授業内容及び授業方法】

実験の概要と、必要な知識を講義し、その後、実験を行う。

偶数回:講義、奇数回:実験 とする。 終了するごとに各自レポートを作成し提出する。

【授業項目】

第1回 ガイダンス(全員) 2、3回 中和滴定

4、5回 比色定量 6、7回 緩衝液

8、9回 反応速度

10、11回 酸化還元

12、13回 電気基礎

実験手引き書は、ガイダンスの時に配布する。また、各講義に必要な資料は、必用に応じて適宜指示または 、配布する。

【参考書】

特になし

【成績の評価方法と評価項目】

1.成績評価

遅刻欠席は原則として、認めない。

報告書未提出者は、評価の対象としない。 各項目の総合評価は、実験報告書40%、実験態度40%、項目の理解度20%を基本とする。

科目全体の評定点は、各項目の評価の平均とする。

2.評価項目

実験技能、授業態度、実験報告書、その他、担当教官が必要と認めた項目

【留意事項】

必ず実験指導書を事前に読んで予習しておくこと。

生物機能工学基礎実験II

実験 2単位 2学期

Basic Experiments on Bioengineering 2

【担当教員】

生物系全教官

【授業目的及び達成目標】

生物機能の素過程の分析法、生体関連物質の性質、反応について、また微生物の取り扱いや培養に関して、原理を理解するとともに基礎的技術を習得することを目標とする。また実験結果の解析に欠かせないコンピューターを用いたデータ処理についても学習する。

【授業キーワード】

有機化学、高分子化学、機器分析、酵素、蛋白質、微生物学、データ処理

【授業内容及び授業方法】

授業項目にあげる5つの実験を行い、各実験項目の終了後、速やかに結果を解析、考察してレポートにまとめて提出する。

【授業項目】

- 1. グルコアミラーゼの酵素学的性質(5回)
- 2. ナイロン66の合成・糖の性質(5回)
- 3. タンパク質の化学(5回)
- 4. 微生物学実験基本操作(5回)
- 5. コンピューター操作(4回)

【教科書】

「実験指導書」をガイダンスの時に配布する。

【成績の評価方法と評価項目】

全ての実験項目に出席し、レポートを提出した者を成績評価の対象とする。各実験項目の得点は出席点(40%)とレポート点(60%)の合計点とし、各実験項目の得点を平均したものを成績とする。

【留意事項】

実験開始までに実験指導書を熟読し、実験内容を十分把握しておくこと。

化学Ⅲ 講義 2単位 1学期

General Chemistry 3

【担当教員】

下村 雅人

【教員室または連絡先】

生物1号棟256室

【授業目的及び達成目標】

生化学や生物関連物質の科学を学んで行く上で必要となる有機化学の基礎的な知識を修得し、有機化合 物の性質や基本的な反応について理解を深めることを目的とする。

【授業キーワード】

有機化学、有機化合物、化学結合、反応機構、置換反応、付加反応、脱離反応、求核反応、親電子反応

【授業内容及び授業方法】

有機化合物を構成する化学結合について概説し、次いで、有機化合物の性質と基本的な反応について、有機電子論的な解説も加えながら、できるだけ平易に論述する。さらに、高分子化合物についての入門的な解説も行う。有機化学で扱う化合物と反応は広範であるが、これらを単に覚えるのではなく、基礎的な考え方や 原理を理解することに力点を置いて講義を進める。板書を多用して講義を行うので、要領よくノートをとって復習に活用すること。

【授業項目】

- 1. 有機化合物を構成する化学結合(第1週~第4週)

- 1.1 有機化合物とその分類 1.2 化学結合の様式 1.3 混成軌道と共有結合 2. 有機化合物の性質と反応(第5週~第13週) 2.1 飽和炭化水素と不飽和炭化水素 2.2 芳香族炭化水素 2.3 アルコール、フェノール、エーテル 2.4 ハロゲン化炭化水素 2.5 アミンとその誘導体 2.6 アルデヒドとケトン 2.7 カルボン酸と
- その誘導体 2.8アミノ酸 3. 高分子化学入門(第14週)
- 4. 定期試験(第15週)

【教科書】

「有機化学」(竹中克彦、西口郁三、山口和夫、鈴木秋弘、前川博史、下村雅人著)朝倉書店

【参考書】

ハート「基礎有機化学」(秋葉欣哉、奥彬 訳)培風館

【成績の評価方法と評価項目】

- 1. 評価方法
 - 定期試験の結果に基づいて評価する。
- 2. 評価項目
- (1)有機化合物を構成する化学結合(とくに共有結合)について理解したか。
- (2)官能基による有機化合物の一般的分類を理解したか。
- (3)授業項目 2. で述べた各化合物群の特徴と代表的な反応を理解したか。

【留意事項】

本講義は、材料開発工学課程2年の基礎有機化学と同一である。

General Chemistry 4

【担当教員】

鈴木 秀松

【教員室または連絡先】

生物1号棟555室

【授業目的及び達成目標】

化学」での物質の理解を、生体と関連する事項に関して、さらに深めることがこの授業の目的である。生体で は特に、各種のイオンをふくむ水溶液が重要な機能を担う.よって、電解質水溶液とその物理化学的性質を理解することが達成目標となる.

【授業キーワード】

微量元素,極性分子,ボルツマン分布,平均自由行程,拡散,イオン半径,電解質,水和,生物学的濃縮, コロイド, 分子間相互作用, 理想溶液, 浸透, 容量オスモル濃度, 透析, 等張液, 生理的食塩水

【授業内容及び授業方法】

第1部ではまず原子の構造について、つぎに原子の結合と分子の構造について講述する. さらに放射能とその生物への影響についても述べる. 第2部では分子の集合体である気体と溶液を取り扱う. 主として電解 質水溶液の性質を生物機能と関連させて講述する.

【授業項目】

第1部

- ・測定とSI単位系(教科書の第1章)
- ・エネルギー(第2章)
- ・原子の構造(第3章)
- ・原子の結合,モル(第4,5章) ・原子と放射能(第7章)
- ・放射能と生物(第8章)
- 試験

第2部

- ・物質の三態(第6章)
- ・気体の拡散, 気体分子運動論(第6章)
- ・ボルツマン分布, 水・溶液・コロイド(第10章) ・非電解質と電解質(第10章)
- ·束一的性質·浸透(第11章)
- •束一的性質•透析(第11章)
- 試験

【教科書】

「生命科学のための基礎化学,無機物理化学編」M. M. Bloomfield著,伊藤俊洋ら共訳,丸善. 3200円.

【参考書】

「化学の扉」(ニューテック・化学シリーズ), 丸山一典ら共著, 朝倉書店.「物理化学」(ニューテック・化学シリーズ), 藤井信行ら共著, 朝倉書店.

「イオンの水和」(化学ワンポイント26),大瀧仁志著,共立出版.

【成績の評価方法と評価項目】

2回の試験により成績を評価する.

各章で現れるキーワードや物理量を理解していること. 新たに学んだ概念や法則を把握していること. それらの概念や法則により, いくつかの自然現象を説明できること.

Introduction to Organic Chemistry

【担当教員】

木村 悟隆

【教員室または連絡先】

生物1号棟554室 nkimura@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

生物を構成している糖質(核酸)、脂質、タンパク質は、すべて有機化合物の集合体であり、それらの合成、分解反応である代謝は酵素を触媒とする有機化学反応である。これら生体内構成成分の性質およびその代謝反応を理解する上で基礎となる有機化学を学ぶ。また、生体内の反応を考える上で重要な、分子の立体構造や立体特異的な反応について重点をおくと同時に、分子構造を調べる上で欠かせない分光法についても触れる。

【授業キーワード】

有機化合物, 構造, 性質, 反応, 立体化学, 分光法

【授業内容及び授業方法】

有機化合物の構造と物性,立体化学に重点を置く.分子模型を適宜利用し,理解の助けにする. 通常の講義形式では,授業は行わない.

第一回目に演習問題を渡し、演習を行う、二回目以降は、これについて受講者に黒板に解答を書いてもらい、説明をしてもらう。それに対して、さらに木村が補足説明を行う。また、問題を各自に解いてもらう間は、巡回して個別指導も行う。分光法では、実際に装置を使って各自測定を行い、そのデータについて説明をしてもらうことにより、理解を深める。

授業項目には1~7の項目が掲げてあるが、毎回の進度、半期で履修する内容は、受講者の理解度により異なる.

【授業項目】

- 1. 共有結合, 水素結合
- 2. 有機化合物の性質(構造と融点・沸点・酸塩基との関係)
- 3. 炭化水素の立体配座(シクロヘキサンのいす形構造など)
- 4. 絶対配置の表記法(DL表記, RS表記)
- 5. 有機反応と立体化学(SN1, SN2反応)
- 6. 簡単な化学英単語(化合物や有機反応の英語名と読み方)
- 7. 分光法(UV-Vis, NMR, IR, MS)

【教科書】

ハート「基礎有機化学」培風館

【参考書】

マクマリー「有機化学概説」東京化学同人

竹中克彦, 西口郁三, 山口和夫, 鈴木秋弘, 前川博史, 下村雅人著, 「有機化学」, 朝倉書店

S. R. Buxton, S. M. Roberts著「基礎有機立体化学」化学同人

【成績の評価方法と評価項目】

期末試験による. 期末試験の内容は,第一回目の演習問題と,この講義で新たに学習した「分光法」および 化学英単語から出題する.

【留意事項】

受講者は基礎自然科学科目の化学IIIを履修し、有機化合物の化学構造や名称,反応について初歩的な知識を得ていることが望ましい。

【参照ホームページアドレス】

http://carbo.nagaokaut.ac.jp/

生物統計学 講義 2単位 1学期

Biological Statistic

【担当教員】

山元 皓二

【教員室または連絡先】

生物1号棟556室

【授業目的及び達成目標】

生物の集団は個性をもつ個体の群れである。それゆえ生物学の分野における調査や実験は、誤った結論を導きやすい。 導いた結論の正当性を客観的に示すための道具が統計学である。 その原理を知り、使いこなせるようになることを目指して講義を行なう。

【授業キーワード】

統計、調査、実験、推定、検定

【授業内容及び授業方法】

教科書を定めるが、統計の理論に関しては必要に応じてプリントを配付し説明する。 より深く理解し、使いこなせるようになるために、生物の実験データの解析について演習を行なう(講義中または宿題)。演習はすべてについて完全な解答が得られるまで再提出をさせ、理解を徹底させる。

【授業項目】

- 1. 生物統計学とは
- 2. 調査と実験
- 3. 観測値(データ)
- 4. 母集団と試料 5. 推定(推定とは、点推定、区間推定)
- 6. 検定(検定とは、カイ2乗検定、t-検定、分散分析、相関、回帰)

【教科書】

生物統計学入門 石居 進著 培風館

【参考書】

必要に応じて紹介する。

【成績の評価方法と評価項目】

演習のレポートを採点し、評価する。

【留意事項】

4学年においても受講が可能である。しかし、2学年で単位を取得した者は再受講できない。

講義 2単位 1学期

Molecules, Life and Physics

【担当教員】

曽田 邦嗣・城所 俊一

【教員室または連絡先】

生物1号棟755室(曽田)、756室(城所)

【授業目的及び達成目標】

前半部では、生命が物理法則との整合の上に成り立っていることを、事実に基づいて理解することを目的とする。具体的には、生物は分子によって構築されていること、分子は物理法則に従って構造を構築し、生命の維持に必要な物性・機能を発現していることを、事例に基づき理解する。後半部では、ヒトを含む多くの生物のゲノム全解読を踏まえて、塩基・アミノ酸配列データの解析の基礎から、遺伝子がコードする蛋白質の構造と機能の予測、更に蛋白質を機能素がよってよって、大変になって、大変によって、大変になって、大変になって、大変によって、大変によって、大変になって、大変になって、大変になって、大変になって、大変によって、大変によって、大変によって、大変によって、大変になって、大変になって、大変によって、大変によって、大変によって、大変によって、大変によって、大変によって、大変になって、大変になって、大変になって、大変によって、大変によって、大変によって、大変によって、大変になって、大変によって、大変によって、大変になって、大変によって、大変によって、大変によって、大変によって、大変になっない。 ノム情報科学の初歩から最前線までを概観する。

【授業キーワード】

蛋白質・核酸, 相互作用, エネルギー, 分子統計熱力学, バイオインフォマティクス, 構造ゲノム科学

【授業内容及び授業方法】

前半では,力学・量子力学・統計熱力学などの物理学の基礎と分子の構造・物性に基づいて生物機能を理解するための基本的な考え方を講述する。後半では,核酸・蛋白質の配列データの解析,構造モデリング の基礎とゲノム情報科学の現状を平易に講述する。随時, 演習例題を解くことにより, 授業内容の理解を深

【授業項目】

- 1. 生物は物理法則に従っている:
- 1.1 古典物理学と量子力学
- 1.2 電子構造と化学結合
- 1.3 生体高分子の構造
- 1.4 エネルギーとエントロピー
- 1.5 構造形成と分子認識
- 1.6 構造転移と分子病理
- 2. ゲノム情報科学入門:
- 2.1 核酸の構造と遺伝コード
- 2.2 塩基配列と遺伝子
- 2.3 遺伝情報の解読:ゲノム・蛋白プロジェクト
- 2.4 塩基配列データの解析 2.5 相同モデリングと蛋白質の機能予測
- 2.6 21世紀のゲノム情報科学

【教科書】

使用しない。資料を適宜配布する。

【参考書】

特になし。

【成績の評価方法と評価項目】

出席と学期末の試験による。

【留意事項】

生命を支える生体分子の構造・物性・機能を、物理法則に基づいて理解することや、生物の遺伝情報の解 明に興味を持つ人の聴講が望ましい。

Microbiology

【担当教員】

政井 英司

【教員室または連絡先】

生物1号棟365室

【授業目的及び達成目標】

微生物は地球上のあらゆる環境に生息し、自然界における物質循環に重要な役割を担っている。また微生物の多様な酵素機能や代謝産物は工業的に有効利用されているものも多いだけでなく、微生物に関する基礎研究が分子生物学や遺伝子工学の発展に大きく寄与してきた。本講義では微生物の分類、構造および 代謝の基礎について学び、多様性の著しい微生物を体系的に理解する上で必要な基礎知識を習得するこ とを目的とする。

【授業キーワード】

真核生物、原核生物、真菌類、グラム陽性細菌、グラム陰性細菌、ウイルス、原核細胞の構造、呼吸、発酵、 光合成、物質循環、微生物遺伝学

【授業内容及び授業方法】

微生物の分類、構造、基本的な代謝について学習した後、物質循環における微生物の役割と機能を学習する。最後に学習してきた内容を基礎として代表的な微生物の特徴について学ぶ。授業は適宜プリントを配布し講義形式で進める。

【授業項目】

第1週 微生物の分類

第2週 細菌の分類と形態

第3週 原核細胞の構造

第4週 原核細胞の構造

第5週 微生物の物質代謝

第6週 微生物の物質代謝

第7週 ウイルス概論

第8週 微生物遺伝学概論

第9週 微生物遺伝学概論

第10週 物質循環

第11週 物質循環

第12週 グラム陰性細菌

第13週 グラム陰性細菌・グラム陽性細菌 第14週 グラム陽性細菌

第15週 期末試験

【教科書】

特に指定しない。適宜プリントを配布する。

【参考書】

R.Y. スタニエ・他著「微生物学・入門編」培風館

R.Y. スタニエ・他著「微生物学・上」培風館

R.Y. スタニエ・他著「微生物学・下」培風館

【成績の評価方法と評価項目】

出席点10%、期末試験90%として成績を評価する。

【留意事項】

応用微生物学の講義を理解するのに必須の内容である。生化学と分子生物学に通じる内容を多く含んでい る。

Physiology and Anatomy

【担当教員】

福本一朗•渡邉和忠

【教員室または連絡先】

生物1号棟654室(福本), 生物1号棟753室(渡邉)

【授業目的及び達成目標】

医学と工学の境界領域にある学問を医用生体工学Biomedical engineeringといい、人体の診断・治療に用いられる全ての医用機器の開発・研究を行なう際の基礎となっているばかりでなく、人間と機械が係わり合う全ての状況で必要とされるマン・マシーン・インターフェイスの設計や人間安全工学を取り扱う人間工学Ergonomicsの基礎ともなっている。人体は一般の工学が扱う無機的な機械とは様々な点で異なり、その理解と取り扱いには特殊な考え方と知識・技術・用語が必要とされている。そしてその人体に関する知識は人類の文明が始まって以来の長い歴史を有する経験的技術体系である医学に最も集約的に蓄えられている。本講義では広大な医学知識のうち、工学者が医用生体工学・人間工学を学ぶうえで必要とされる最低限の基礎医学的知識を人体解剖学Human anatomyおよび人体生理学Human physiologyを中心に学習する。本講義を受講するためには何らの予備知識も必要とされない。履修後には医師・看護婦などのメディカル・スタッフと専門用語を交えて議論できる能力の修得を最終目標とする。

【授業キーワード】

医用生体工学、人間工学、人体解剖学、人体生理学、基礎医学

【授業内容及び授業方法】

教科書の予習復習を義務とし、授業においてはオーバーヘッドとビデオを用いて人体の基本的構造と機能を視覚的に学ぶ。講義項目には出席が義務の救急心肺蘇生術も含まれている。講義期間中に約3回のDuggaと呼ばれる小試験を行ない、そのすべてに合格したものにのみ最終試験受験資格を与える。

【授業項目】

解剖学概論・神経系学(中枢神経系・末梢神経系・記憶意識学習)・感覚器系学・内分泌系学・消化器系学・循環器系学・呼吸器系学・泌尿器系学・生殖器系学・生体リズム・救急医学

【教科書】

佐藤達夫他著「解剖生理学」医歯薬出版社刊

【参考書】

Heintz Feneis:「図解解剖学事典」、医学書院真島英信:「生理学」、文光堂

【成績の評価方法と評価項目】

最終試験およびDuggaの成績を基に評定する。

【留意事項】

本科目は「生物学基礎」または「生物学II」既履修者を対象に人体の解剖生理学を継続して講義するものである。また学部4年科目の「医用生体工学」、大学院科目として開講されている「医用機器工学特論」の履修希望者にとって最も大切な基本となる知識を与えるものである。上記の科目を履修予定の者はその続編である「神経科学」とともに本講義をも履修しておくことが望ましい。

経営情報数学 [講義 2単位 2学期

Mathematics for Management and Information 1

【担当教員】

経営情報系全教員

【教員室または連絡先】

鈴木 泉, 化学·経営情報1号棟408, 内線9360, Mail: suzuki@kis.nagaokaut.ac.jp

【授業目的及び達成目標】

経済、経営、社会科学、および情報システム科学に必要な数学を学習する。これらの数学的手法の基礎が完全に使いこなせるようになることを目標とする。

【授業キーワード】

集合論、線形代数、線形計画法、微積分

【授業内容及び授業方法】

学習事項は必要最小限に厳選し、実例をもとに解説する。授業は演習形式を主とする。

【授業項目】

基礎の復習 集合、方程式とグラフ、関数 線形代数と行列 線形計画法 微分法(基礎)

【教科書】

プリントを配布する

【成績の評価方法と評価項目】

時間内の演習実績によって評価するが、場合によっては期末試験を行う。

経営情報数学II 講義 2単位 1学期

Mathematics for Management and Information 2

【担当教員】

経営情報系全教員

【教員室または連絡先】

鈴木 泉, 化学·経営情報1号棟408, 内線9360, Mail: suzuki@kis.nagaokaut.ac.jp

【授業目的及び達成目標】

経営情報数学I に引き続き、経済、経営、社会科学、および情報システム科学に必要な数学を学習する。Iでは基礎項目を多く学習するのに対し、II では多少レベルの高い応用分野を学習する。

【授業キーワード】

経済、経営、社会科学、情報システム科学、数学

【授業内容及び授業方法】

学習事項は必要最小限に厳選し、実例をもとに解説する。授業は演習形式を主とする。

【授業項目】

数値計算 微分法(基礎) 積分法 多変量解析 確率、統計

【教科書】

プリントを配布する

【成績の評価方法と評価項目】

時間内の演習実績によって評価するが、場合によっては期末試験を行う。

Computer Literacy 1

【担当教員】

経営情報系全教員

【教員室または連絡先】

鈴木 泉, 化学·経営情報1号棟408, 内線9360, Mail: suzuki@kjs.nagaokaut.ac.jp

【授業目的及び達成目標】

Windows環境における、基本的なアプリケーションの操作方法の修得および、文書、パソコン、インターネットといった様々なメディアでのプレゼンテーション能力の養成を目的とする。また、ビジネスおよび社会環境の国際化に対応できる情報収集能力とリテラシー表現のセンスを養う。

【授業キーワード】

Windows

インターネット

表計算

プレゼンテーション

データーベース

【授業内容及び授業方法】

担当教官が毎回テーマにそって、基礎知識と基本操作を指導する。学生はコンピュータを実際に操作し、与えられた課題を作成することを通して、様々な操作、テクニックを習得してゆく。学生の課題、成果物はレポートおよびプレゼンテーションとして提出・発表してもらい、評価の対象とする。

【授業項目】

- 1.Windowsの基本操作 2.ネットワークに関する基本操作
- インターネットと電子メール
- 3.Wordの操作
- 文書の作成
- 4.Excelの操作
- 表計算,グラフの作成
- マクロとVBA
- 5.PowerPointの操作
- プレゼンテーションの企画・作成・発表
- 6.Accessの操作
- フォームとテーブルリレーションシップとクエリ
- レポートの作成
- 7.PowerPointの操作
- Webページの作成・発行

ワープロ、表計算、データベース、プレゼンテーションなどのアプリケーション操作の実習、およびそれらを応 用したプレゼンテーションの企画、準備、実演など

【教科書】

経営情報系編集の冊子を使用する。

【参考書】

適宜、指定する。

【成績の評価方法と評価項目】

出席点 15%, レポート提出物 75%, プレゼンテーション 10%

【留意事項】

なし

経営情報学基礎 講義 2単位 1学期

Introduction to Management at Cyberspace

【担当教員】

三上 喜貴

【教員室または連絡先】

化学経営情報1号棟308室

【授業目的及び達成目標】

経営に関わる情報システム開発・運用に関わる基礎的な概念を理解する。なお、ここで経営とは、狭義の企業経営にとどまらず、広く組織体運営全般に関わるものとして扱う。

【授業キーワード】

組織経営、内部情報と外部情報、情報と意思決定、経営情報、企業会計と情報システム、情報開示、システム監査、個人情報保護、セキュリティー管理、情報技術と知的所有権保護

【授業内容及び授業方法】

講義中心に行うが、事例研究、事例調査を通じて基礎概念を立体的、総合的に把握できる能力を養う。

【授業項目】

- 1. 組織経営と情報
- 2. 情報技術の歴史
- 3. 通信ネットワークの歴史 4. 電子商取引とサプライチェーン
- 5. 金融ネットワーク
- 6. 物流ネットワーク
- 7. ネットワークにおけるセキュリティ
- 8. 個人情報の保護
- 9. 情報技術と標準
- 10. 情報化の光と陰

【教科書】

別途指示する。原則として、三上の講義用WEBページ(http://kjs.nagaokaut.ac.jp/mikami/)を参照しつつ 授業を進める。補足資料は適宜教室で配布する。

【成績の評価方法と評価項目】

出席(30%), 演習課題(30%), 中間試験(20%), 期末試験(20%)を総合的に評価して行う。

【参照ホームページアドレス】

http://kjs.nagaokaut.ac.jp/mikami/ Mikami's virtual class

経営のしくみ 講義 2単位 1学期

Practice of Management

【担当教員】

(未定)

【授業目的及び達成目標】

企業の目的は、社会に貢献するために、商品の提供活動や随伴活動を通して、資本が生み出す利潤を極 大化することである。

極大化の為に企業が行う諸活動の要素を、企業が基本的に保有する機能や顧客に提供する品質保証体 系を通して、経営の仕組みを考察する。

【授業キーワード】

顧客ニーズ、組織、マーケテイング、経営戦略、標準化、ビジネスモデル、財務会計、情報化、商取引

【授業内容及び授業方法】

授業内容は、授業項目に示したものとそれらに関連するものとする。授業方法は、原則として、次の通り行う ものとする。

- (1)事前に明示する授業項目にかかわるキーワードについて予習する。
- (2)事前に予習を求めたキーワードについて小テストを行う。
- (3)キーワードの解説を含め、授業項目について解説し、質疑応答を受け付けながら、考察を進める。 (4)個人別に経営像を描かせ、各人のイメージを議論によって高めさせる。

【授業項目】

- 1. 諸活動と組織の発生
- 2. 組織のパターン
- 3. 企業組織と事業
- 4. 企業活動のための資源
- 5. 機能別要素の役割
- 6. 資源と機能の相関
- 7. 事業の要素
- 8. 事業要素別の仕組み
- 9. 経営者の役割

【教科書】

なし

【参考書】

適宜紹介する

【成績の評価方法と評価項目】

予習に提供するキーワードの予習結果の相互評価の平均値 (50%)授業項目を理解しているかが評価される期末試験の結果 (50%)

講義 1単位 1学期

Computer Literacy 2

【担当教員】

経営情報系全教員

【授業目的及び達成目標】

Unix (Linux)端末における操作方法の修得およびオブジェクト指向に基づくプログラム開発能力を養うことを 目的とする。研究等に必要なプログラムをUnix上 (Linux上)で開発できる能力を身につけることを目標とする

【授業キーワード】

Unix, Linux, Java, オブジェクト指向言語、プログラム開発

【授業内容及び授業方法】

担当教官が毎回テーマにそって、必要な説明を行いながら、関連する操作方法を指導する。学生は各自の 端末で、実際にハード・ソフトを操作しながらその方法を修得する。原則的に毎回リポートの提出を課す。

【授業項目】

UnixとLinuxの基本操作

- 1. マルチユーザシステム、シェル、オンラインリファレンスmanを使う
- 2. コマンド行の使い方、階層化ファイルシステム、ファイルリストの出力とディスクスペースの管理
- 4. 所有者とアクセス許可
- 5. ファイルおよびディレクトリ関連の操作、フィルタとパイプ、ワイルドカードと正規表現
- 6. コマンドシェルの基本、ジョブ制御、情報とファイルの検索 オブジェクト指向プログラミング

- 7. Javaプログラミング環境
- 8. Javaによるプログラミングの基礎構造
- 9. 簡単なJavaプログラム
- 10. データ型、変数、代入と初期化、演算子 11. 文字列、制御フロー、大きな数値、配列
- 12. オブジェクトとクラス
- 13. 既存のクラスを使用
- 14. 新しいクラスの作成、クラスの拡張

【教科書】

担当の教官が指定する。

【参考書】

講義の中で適宜紹介する。

【成績の評価方法と評価項目】

中間テスト、期末試験、出席状況により総合的に評価する。

【留意事項】

特になし

経営情報システム基礎実験

実験 2単位 2学期

Basic Management Information Systems Laboratory

【担当教員】

経営情報系全教員

【教員室または連絡先】

化学・経営情報1号棟304室(吉田)

【授業目的及び達成目標】

Webアプリケーションの構築に関連した基礎技術の修得、および電子商取引システムに関する基本的な知 識の習得を目的とする。 電子商取引サイトの設計および作成に必要な基礎能力を身につけることを目標とする。

【授業キーワード】

Webアプリケーション 電子商取引

【授業内容及び授業方法】

担当教官が毎回テーマにそって必要な説明を行いながら、関連する操作方法を指導する。学生は各自の端 末で、実際にハード・ソフトを操作しながらその方法を修得する。 下記授業項目について各1回、合計6回のリポート提出を課す。

【授業項目】

- 1. オブジェクト指向プログラミング
- 2. ホームページの基礎および作成
- 3. インタラクティブなホームページの作成
- 4. データベースを利用したホームページの作成
- 5. 電子商取引サイトの設計
- 6. 電子商取引サイトの構築

【教科書】

雷子商取引サイトの構築には、オブジェクト指向、データベース、をはじめ、広範な知識、技術を必要とする ため、適宜資料を配付する。

【参考書】

担当の教官が指定する。

【成績の評価方法と評価項目】

以下の配分で評価、採点を行う。 授業態度20%、提出リポート80%

【留意事項】

オブジェクト指向プログラミング言語に関する 基本的な技術を習得していることが望ましい。

講義 2単位 2学期

Information Systems

【担当教員】

會田 雅樹

【教員室または連絡先】

非常勤講師

【授業目的及び達成目標】

近年のインターネットや携帯電話の爆発的な普及に見られるように、情報システムは様々な用途で利用され 、我々の社会にとって不可欠なものとなっている.本講義では、情報システムがどのように設計、運用されて いるのかについて学ぶ.

具体的には、通常の電話、パケット通信、インターネット、セルラーシステム等の基本的な仕組みとそれらの基盤技術を学び、併せて、これらのシステム設計としてどのようなモデル化がなされ、性能評価が行われているのかについての概要を学ぶ.

これらの学習を通じて、実際の情報システムが概観でき、更に数学的なモデルが実生活でどのように役立っているかについての一例を理解することができる。

【授業キーワード】

音声電話, インターネット, セルラーシステム(携帯電話), 待ち行列, シミュレーション

【授業内容及び授業方法】

情報システム(特に情報通信ネットワーク)の基本的な仕組みを解説する. 講義時間内に質疑応答に時間をとりながら進める. 若干数学的なモデルの説明を含むが, 実際のイメージと対比させながら説明を行うので, 確率論等の数学的知識は必ずしも必要としない.

【授業項目】

- 1. インターネット
 - ・パケット通信と電話の違い
 - ・インターネットの仕組み、設計思想
 - ・TCP/IPのLくみ
 - ・ルーチングの仕組み,等
- 2. 携帯電話ネットワーク
 - ・携帯電話ネットワークの仕組み
 - ・携帯電話ネットワークの設計(従来の電話ネットワークも併せて解説)
- 3. 性能評価法
 - ・簡単な待ち行列モデル
 - ・シミュレーションの仕組み、いろいろなトラヒックパターン発生法
 - ・シミュレーションの誤差, インポータンスサンプリング
 - 自己相似トラヒック,等
- 4. 最近の話題から
 - ・インターネット関連技術の例,等(実社会での応用例を解説)

【教科書】

なし(必要な資料は講義の際に配付する).

【成績の評価方法と評価項目】

レポート 80%

学習熊度 20%

レポートについてはオリジナルなものを重視する.提出は1回.学習態度については,授業開始後20分までを遅刻,それを過ぎた場合には欠席とする.欠席の回数によりレポートの評価に減点を加える場合がある.

【留意事項】

理解困難な点,不明な点がある場合には,授業で質問すること.授業時間以外の質問は電子メールで随時受け付ける.アドレスは配付資料で知らせる.

講義 2単位 2学期

Introduction to Human Development System

【担当教員】

植野 真臣

【教員室または連絡先】

化学経営情報1号棟309室

【授業目的及び達成目標】

「人間」について考えることは、多くの学問分野共通の話題である。しかし、様々な学問分野では、それぞれ のビューポイントやアプローチをかえて人間について考えている。ここでは、人間のモデル化を考えてきた様々な学問分野を横断的に理解し、それらを統合的に考えることによって、ポストモダン的学問のアプローチを

分野は「哲学」、「社会科学」、「心理学」、「文学」、「人工知能」、「数学」、「経済学」からの人間モデルを取り 上げ、それぞれについて理解させる。

【授業キーワード】

人間システム、知識工学、哲学、二元論、社会的構成主義、コミュニケーション、人工知能、数学、経済モデ

【授業内容及び授業方法】

「人間」について考えることは、多くの学問分野共通の話題である。しかし、様々な学問分野では、それぞれのビューポイントやアプローチをかえて人間について考えている。ここでは、人間のモデル化を考えてきた様々な学問分野を横断的に理解し、それらを統合的に考えることによって、ポストモダン的学問のアプローチ を理解する。

分野は「哲学」、「社会科学」、「心理学」、「文学」、「人工知能」、「数学」、「経済学」からの人間モデルを取

り上げ、それぞれについて理解させる。 講義を主体とするが、討論の時間を与え、自分自身で考えさせ、授業に積極的に参加することを前提とす る。評価は、テストを行い評価する。

【授業項目】

- 1. 人間のモデル化
- 2. 知識の表象
- 3. 二元論:主観-客観 4. 社会的構成主義
- 5. 社会的構成主義における科学
- 6. 社会構成主義による教育方法
- 7. 知識のシステム
- 8. 人工知能は実現するのか
- 9. 経済モデリングと人間のモデリング
- 10. 数学は人間と独立か
- 11. 対話としての知識
- 12. コミュニケーション理論
- 13. 知識経営 14. ナレッジマネージメント

【教科書】

なし。

【参考書】

講義のなかで適宜紹介する。

【成績の評価方法と評価項目】

100%

評価は、テストを行い評価する。

授業に出てくる用語、人名、考え方、手続き等についてのテスト問題を出題する。

【参照ホームページアドレス】

http://kjs.nagaokaut.ac.jp/ueno 植野研究室ホームページ

統計工学基礎 講義 2単位 2学期

Basic Statistics for Engineering

【担当教員】

中村 和男・山田 耕一・李 志東・植野 真臣

【教員室または連絡先】

化学経営情報1号棟405室(中村 E-mail:nakamura@kjs.nagaokaut.ac.jp),

総合研究棟4F(山田 E-mail:yamada@kjs.nagaokaut.ac.jp),

化学経営情報1号棟306室(李 E-mail:zhidong@kjs.nagaokaut.ac.jp),化学経営情報1号棟309室(植野 E-mail:ueno@kjs.nagaokaut.ac.jp)

【授業目的及び達成目標】

実世界の様々な現象は不確かさを含んでおり、そうした現象に関するに曖昧な情報から、その現象の本質 となる事柄を読み取る能力が必要である。統計学とは、そうした情報処理を客観的に行うための学問である。 本講義では、統計学の基本的考え方に重点を置き、身近な例を挙げながら、データの種類、加工と記述方 法、統計的推定と仮説検定など、統計学の初歩について学習することを目的とする。

【授業キーワード】

不確かさ, データ, 分布, 平均・散布度, 確率, 確率分布, 統計的推定, 統計的検定

【授業内容及び授業方法】

プリントを配布し講義形式による授業を主体として行うが,WEB講義も併せて受講できるようにする。必要に 応じて演習問題を課す。

【授業項目】

1. 統計学の概要(1回)

経験の理解,統計とは何だろう,記述統計と推測統計,標本の収集(サンプリング)

2. データの記述(2回)

収集された標本の記述,統計的変量,誤差,精度,そして近似値 データのまとめ方、表とグラフによる表現、中心化の傾向(あるいは平均)、ばらつきの尺度

3. 確率(2回)

確率とは、条件付確率、ベイズの定理

4. 確率分布(2回)

確率分布, 母数, 離散分布, 連続分布, その他の分布

歪んだ分布, 正規分布の導入, 正規曲線のもとでの割合, 値の比較

5. 統計的推定(3回)

推定値と推測, サンプリング (標本抽出)のロジック, 標本平均の分布, 母集団平均の推定 その他のパラメータの推定、点推定、最尤推定、ベイズ推定、区間推定

6. 統計的検定(4回)

標本間の比較(同一の母集団からか, 異なる母集団からか), 有意性検定, 有意性の意味 ちらばりの比較、ノンパラメトリックな方法

有意性検定の応用, 片側検定対両側検定, z検定とt検定, いくつかの平均の比較, 比率の比較

【教科書】

なし

【参考書】

D. ロウントリー著、加納悟訳、新・涙なしの統計学、新世社

【成績の評価方法と評価項目】

- 1. レポート(演習問題を含む)および学習態度(受講状況や質疑の態度) 40%
- 2. 学期末試験(オンライン端末活用。配布資料および電卓の持込可) 60%

【留意事項】

講義の補助として並列開講されるWEB講義を授業理解のために有効活用して欲しい。 3学年に開講する「統計工学」とあわせて履修することが望ましい。

工学基礎I 講義及 2単位 1学期

Guided Tour in Engineering 1

【担当教員】

経営情報系全教員

【授業目的及び達成目標】

情報技術(IT)の基礎とその応用についての基礎を学ぶ。

【授業キーワード】

情報、技術

【授業内容及び授業方法】

情報技術(IT)の7つのトピックについて、各専門の教官が各二回、ネット授業で講義、メールで指導が行われ る。指定されたWeb上で学習する。また、毎週、掲示板に指示・討論が出されるので毎日、該当Webにアクセ

最終テストはWeb basedコンピュータテストで行われ、学習プロセス、テスト結果を持って評価する。

【授業項目】

- コンピュータ技術と情報
 通信技術と情報
- 3. 生産と情報
- 4. 流通と情報
- 5. 生活と情報
- 6. スポーツと情報 7. 経済と情報

【教科書】

未定

【成績の評価方法と評価項目】

評価はレポート、期末試験とする。

【留意事項】

ネット授業形式をとることから、最初のガイダンスで方法をよく聞くこと。

人間工学概論 講義 2単位 1学期

Elementary Human Engineering

【担当教員】

中村 和男

【教員室または連絡先】

化学経営情報1号棟405室(E-mail: nakamura@kjs.nagaokaut.ac.jp)

【授業目的及び達成目標】

科学技術の高度化が進む中で,それを活用する人間との調和を図ることがますます重要になっている。技術者として人間を尊重し中心に据えた製品,環境,システムの実現をめざし,形態,生理,心理などの人間特性を踏まえたアプローチを行うための基本的な考え方を身につけてもらう。

マンマシンシステム, 設計・評価, 人間特性, マンマシンインタフェース, 作業, 情報, 環境, バリアフリー, 計 測技法

【授業内容及び授業方法】

基本的な人間特性の概念から始めて、製品や環境の設計や評価への人間工学的アプローチの意味を具体 事例を通して知ってもらい,最後にそれらを実践して行く上で有用な人間工学的な計測,分析の方法論の概 要を学んでもらう。教科書を中心に解説して行くが、適宜、PC教材、ビデオ教材などを併用しながら理解を深 められるように進めて行く。

【授業項目】

- 1. 人間工学の考え方(1回)
 - 人間工学とは、マンマシンシステム
- 2. 人間の諸特性(3回)
 - 生理特性, 心理特性, 形態特性
- 3. 機械の諸要素と人間特性(3回) 表示器, 操作器, 空間的インタフェース
- 4. 作業と負担・疲労(1回)
- 筋疲労,精神疲労,ストレス 5.情報と人間特性(2回)
- - 情報処理時間, ソフトウェアインタフェース
- 6. 物理的環境(1回)
- 温熱,音,光,振動,電磁波など7.総合的な視点(2回)
- 個人差, バリアフリー, 信頼性, 生産方式 8. 人間工学の技法(1回)
- 計測,分析,評価の手法

【教科書】

横溝克巳・小松原明哲著「エンジニアのための人間工学(改訂)」(日本出版サービス)

【参考書】

人間工学教育研究会編「人間工学入門」(日刊工業新聞社)、池田良夫編著「応用人間工学」(放送大学教 育振興会)、野呂影勇編集「図説エルゴノミクス」(日本規格協会)

【成績の評価方法と評価項目】

- 1. レポート(フィールド調査を含む)
- 2. 学期末筆記試験(配布資料の持込可) 50%
- 3. 学習態度(出席状況や聴講・質疑の態度) 10%

コンピュータグラフィックス概論

講義 2単位 1学期

Computer Graphics

【担当教員】

土田 知也

【教員室または連絡先】

非常勤講師 E-mail:ttuchida@nagaoka-id.ac.jp

【授業目的及び達成目標】

様々な分野でツールとして活用されているコンピューターグラフィックス(以下CG)の基本について理解し、その応用範囲の広さを知る。

【授業内容及び授業方法】

OHP、プロジェクター、板書を用いてCGの代表的な手法とその応用事例について講義する。

【授業項目】

1.CGとは

CGの分類、CGの応用事例

2.二次元画像の生成ディスプレイへの表示、画像処理3.モデリング

点・線・面の記述、立体の記述、幾何変換

4.レンダリング

レンダリングの手順、投影変換、レイトレーシング、光源、マッピング、その他のアルゴリズム

5.自然物/不定形の表現

フラクタル、ボリュームレンダリング、パーティクル、メタボール

6.CGの歴史

映像表現の歴史、CGの軌跡

【教科書】

入門コンピュータグラフィックス (財)画像処理情報教育振興協会 必須ではないが所有することが望ましい。

【成績の評価方法と評価項目】

中間テスト及び期末テストを行う。

講義 2単位 2学期

Information Network

【担当教員】

Zavarsky Pavol (ザバルスキ パヴォル)

【教員室または連絡先】

化学・経営情報1号棟307室

【授業目的及び達成目標】

これからの高度情報化社会に欠かせない情報ネットワークの基礎知識技術を学ぶ。

【授業キーワード】

データ通信、コンピュータネットワーク、インターネット

【授業内容及び授業方法】

高度情報化社会に入りつつある中で欠かせない、情報ネットワークの利用技術の基礎について学ぶ。

【授業項目】

- 1. 情報ネットワークの目的
- 2. ネットワークハードウェア
- 3. ネットワークソフトウェア
- 4. ネットワークの例
- 5. データ通信の理論的基礎
- 6. 通信衛星
- 7. LANとMANに対するIEEE標準802
- 8. 高速LAN
- o. 同歴LAN 9. ネットワーク間接続 10. スイッチ、ブリッジ、ルータ、ゲートウェイ 11. インターネットプロトコル
- 12. サブネット、クラスレスインタードメインルーティング13. トランスポートプロトコル
- 14. ドメイン名システム

【教科書】

特に指定しない。講義資料は適宜配布する。

【参考書】

講義の中で適宜紹介する。

【成績の評価方法と評価項目】

中間テスト、期末試験、出席状況により総合的に評価する。

【留意事項】

特になし。

Operations Research

【担当教員】

大里 有生

【教員室または連絡先】

化学経営情報1号棟409室

【授業目的及び達成目標】

オペレーションズ・リサーチ(OR)は「経営組織体が、最大の成果をあげるために、限られた資源(人員、材料、資本、設備など)を合理的かつ最適に運用する仕事を、科学的な方法によって行うこと」すなわち「作戦研究」のための方法論である。この「最適方策・行動を決定するための科学的方法論」としてのオペレーションズ・リサーチの意義を理解し、最適方策・行動決定のための数理的方法・手法について学ぶことを目的とする。

【授業キーワード】

最適方策、最適化、数理計画、ネットワーク計画、シミュレーション、確率モデル、需要予測、日程計画、在庫 管理、意思決定、ファジィ理論

【授業内容及び授業方法】

最適化のための数理計画法、ネットワークによる計画技法、シミュレーション解析のための確率モデル論、需要予測のための数理モデル、日程計画・在庫管理のための数理技法、階層化意思決定法・ファジィ最適化などを中心としたオペレーションズ・リサーチの基礎について講述する。

【授業項目】

- 1. 序論
- 2. オペレーションズ・リサーチの基礎数学
- 3. 線形計画法
- 4. ネットワーク分析
- 5. 動的計画法
- 6. 待ち行列理論
- 7. シミュレーション
- 8. 日程計画管理
- 9. 在庫管理
- 10. 需要予測
- 11. 階層化意思決定法
- 12. 不確実な環境下における意思決定とファジィ最適化

【教科書】

なし。講義資料は適宜配布する。

【参考書】

「オペレーションズ・リサーチの手法」、近藤次郎、日科技連。

「オペレーションズ・リサーチ」上・下巻,三根久、朝倉書店。

「経営情報処理のためのオペレーションズリサーチ」、栗原謙三・明石吉三、コロナ社。

「ファジィ工学入門」、本多中二・大里有生、海文堂出版。

【成績の評価方法と評価項目】

以下に示す2つの個別評価を総合して成績を評価する。

- 1. 適宜提示する課題に対する中間レポート(3回程度)
- 2. 学期末に行う期末試験(1回)

総合合評価における上記個別評価の割合は、中間レポート30%、期末試験70%とする。

【留意事項】

受講者は、「統計工学基礎」(専門基礎科目)を履修していることが望ましい。

【参照ホームページアドレス】

http://alice.nagaokaut.ac.jp

工学基礎Ⅱ 講義及 2単位 2学期

Guided Tour in Engineering 2

【担当教員】

経営情報系全教員

【授業目的及び達成目標】

情報技術(IT)を用いた様々な分野による応用を理解する。

【授業キーワード】

情報、技術

【授業内容及び授業方法】

ネット授業方式の授業である。情報技術(IT)を用いた様々な分野による応用を理解し、新しい応用に対するアイデアを創造する能力を作る。

情報技術(IT)を用いた様々な分野による応用について、様々な分野(7分野)の専門家に各分野におけるIT の応用についてネット授業で講義、メールで指導を行ってもらう。指定されたWeb上で学習する。また、毎週 、掲示板に指示・討論が出されるので毎日、該当Webにアクセスしてほしい。 最終テストはWeb basedコンピュータテストで行われ、学習プロセス、テスト結果を持って評価する。

【授業項目】

- 1. 環境と情報 2. 教育と情報
- 3. 医学・医療と情報

- 4. 経営と情報 5. 情報と法規制 6. 企業と情報 7. 情報とセキュリティ

【教科書】

未定

【成績の評価方法と評価項目】

評価はレポート、期末試験とする。

【留意事項】

ネット授業形式

技術思想と人間社会

講義 2単位 2学期

Technological Thought and Human World

【担当教員】

加藤 幸夫

【教員室または連絡先】

化学経営情報1号棟504室

【授業目的及び達成目標】

人類の発生と道具の使用は密接に関わっていて、道具の使用方法が「技術」として、古来から人間社会の進展に多大な影響を及ぼし続けている。技術と人間の対峙から生み出される思想と人間社会の質的連関の変遷を概観しつつ、あるべき技術社会の理想形態を探る。

【授業キーワード】

テクネー、人間社会、情報技術と社会、技術者と技術思想、技術と人類の幸福

【授業内容及び授業方法】

講義形式とゼミ・討論形式を併用する。随時レポートを課す。

【授業項目】

- 1. 技術とは何か
- 2. 技術の発生
- 3. 技術概念の成立 4. 技術思想の変遷
- 5. 技術と人間存在
- 6. 技術社会の諸相 7. 技術と人間性
- 8. 技術と倫理・道徳性
- 9. 技術文明の課題と展望
- 10. その他

【教科書】

教科書は特に指定しない。随時プリントおよび参考資料を配付する。

【参考書】

講義時間内に随時紹介する。

【成績の評価方法と評価項目】

原則的にはレポートの成績(80%)および平常点(20%)により評価する。場合によっては筆記小テストを行う。

【留意事項】

第1年次に教養科目の「世界観と価値」または「現代人間論」のどちらかを履修していることが望ましい。

経営学 講義 2単位 2学期

Business Administration

【担当教員】

(未定)

【授業目的及び達成目標】

経営学は、いかなる組織の経営の仕組みをも体系的に説明し、経営者や管理者に理論的なよりどころを与える学問体系である。この経営学の仕組みについての基礎的な知識を習得することを目的とする。また、授業項目とそれらに関連する事項を理解し、問題意識を持ち、授業から啓発を受け。計画実践を試みようとする意識を持つことを達成目標とする。このために必要な興味の持続のために、教官の実体験に基いた事例を 引用する。

【授業キーワード】

起業、経営組織、マーケテイング、経営戦略、標準化、ビジネスモデル、財務会計、情報化、商取引

【授業内容及び授業方法】

授業内容は、授業項目に示したものとそれらに関連するものとする。授業方法は、原則として、次の通り行う ものとする。

- (1)事前に明示する授業項目にかかわるキーワードについて予習する。
- (2)事前に予習を求めたキーワードについて小テストを行う
- (3)キーワードの解説を含め、授業項目について解説し、質疑応答を受け付けながら、考察を進める。

【授業項目】

- 1. 経営のとはなにか
- 2. 会社設立の手続き
- 3. 経営の仕組み
- 4. 組織の種類
- 5. 生産方式と経営戦略
- 6. マーケテイングと経営戦略 7. デファクトスタンダードと経営戦略 8. デジュールスタンダードと経営
- 9. ビジネスモデルと経営戦略
- 10. ナレッジマネジメント
- 11. 社内外への情報公開 インターネットとイントラネット
- 12. 財務会計の仕組み
- 13. 商取引の仕組み
- 14. デリバテイブ取引の仕組み

【教科書】

なし

【参考書】

適宜紹介する

【成績の評価方法と評価項目】

授業項目を理解しているかが評価される期末試験の結果(100%)

【留意事項】

この科目における授業項目は第3学年2学期に開講される経営情報システム工学の基礎的教養となる。

産業システム論 講義 2単位 2学期

Introduction to Industrial System

【担当教員】

三上 喜貴

【教員室または連絡先】

化学経営情報1号棟308室

【授業目的及び達成目標】

本講義では、情報システムの適用分野のうち、政府、医療・福祉、教育、交通、環境など、社会的なインフラを構成する分野を取り上げて、情報システム構築の実際について学習する。また、これを通じて、適切な情報システムを設計し得る能力を養う。

【授業内容及び授業方法】

具体的な事例としては、電子政府、医療・福祉、教育、博物館、流通、経営資源管理、顧客管理、交通情報システム、環境問題など多様な分野を取り上げて、具体的、立体的に問題の把握能力を高める。

- (1)e-Japan計画 (2)電子政府論(行政の改革と情報化の役割/調達/納税/住民基本台帳など)
- (3) 医療・福祉と情報化(アクセシビリティ指針
- (4)教育と情報化
- (5)消費者の情報行動と情報システム
- (6)社会システム

【教科書】

特にない。資料は教室で配布する。

【成績の評価方法と評価項目】

試験、レポート、出席を総合的に評価する。

【参照ホームページアドレス】

http://kjs.nagaokaut.ac.jp/mikami/ MIKAMI's virtual class

Intellectual Property Rights

【担当教員】

松井 志菜子

【教員室または連絡先】

化学経営情報1号棟305室

【授業目的及び達成目標】

IT(情報技術)、BT(バイオテクノロジー)、NT(ナノテクノロジー)、ET(環境技術)など先端科学技術の急速な発展に伴い、知的財産権の保護と活用が現代社会の重要課題である。国境を超える知的財産権事案に係わる国際機関や条約、国内の立法措置など法による規律は実際の紛争解決の後追いが現状である。この授業は技術科学の研究者が発明やソウハウなど知的財産権の保護と活用に必要な法の基礎知識を体系的に 習得することを目的とする。また専門知識を有する技術者、科学者の立場から知的財産立国への提言を目 標とする。

【授業キーワード】

知的財産立国、WTO(世界貿易機関)、TRIPs協定(知的財産権の貿易関連の側面に関する協定)、WIPO (世界知的財産権機関)、パリ条約、ベルヌ条約、万国著作権条約、産業財産権、職務発明、不正競争防止

【授業内容及び授業方法】

授業内容は授業項目に沿った講義を中心に行う。知的財産高等裁判所設置は熾烈な技術開発競争から生 じる知的財産権の紛争解決の要請から出た。マルチメディアの発達、世界中に広がるネットワークは利便性 とともに危険も併せ持つ。立法当初には予期せぬ問題や不正行為も時と場所を選ばず瞬時に世界を駆け巡 る。国内外の法的措置や新たな紛争解決方法が必要となる。知的財産権をどの様に保護し活用するか。不正競争防止法、著作権法、産業財産権法など知的財産権に係わる法や国際協定、条約などをわかりやすく 説明する。

【授業項目】

- 第1回 知的財産権とは何か。沿革
- 第2回 知的財産権法の現代的意義
- 第3回 知的財産権法の種類
- 第4回 知的財産権の国際化
- 第5回 知的財産権と他の法との関係
- 第6回 知的財産権の権利の発生、客体、行使、変動
- 第7回 知的財産権の侵害、消滅
- 第8回 知的財産権の権利侵害と権利保護、救済制度
- 第9回 発明と特許法
- 第10回 著作権法
- 第11回 コンピューター・プログラム、データベースの保護
- 第12回 BT(バイオテクノロジー)の保護
- 第13回 国際取引(並行輸入、技術移転契約)
- 第14回 ベルヌ条約、万国著作権条約、パリ条約、GATT、WTO、TRIPs協定、WIPO 第15回 知的財産権侵害訴訟の国際裁判管轄権と準拠法

【教科書】

未定

【参考書】

適宜、紹介する。

【成績の評価方法と評価項目】

課題レポート(外国語提出可能)(70%)

授業態度や議論・討論への参加状況、積極性、問題意識、課題への取組姿勢などを総合評価(30%)。

【留意事項】

知的財産権関係の法律(特許法、実用新案法、意匠法、商標法、不正競争防止法、著作権法)、条約(ベルヌ条約、万国著作権条約、パリ条約)、GATT、TRIPs協定などの条文を持参することが望ましい。六法、条約については初めの授業で説明する。

e-経営情報学基礎 講義 2単位 1学期

e-Introduction to Management at Cyberspace

【担当教員】

三上 喜貴

【教員室または連絡先】

化学経営情報1号棟308室

【授業目的及び達成目標】

経営に関わる情報システム開発・運用に関わる基礎的な概念を理解する。なお、ここで経営とは、狭義の企業経営にとどまらず、広く組織体運営全般に関わるものとして扱う。

【授業キーワード】

組織経営、内部情報と外部情報、情報と意思決定、経営情報、企業会計と情報システム、情報開示、システム監査、個人情報保護、セキュリティー管理、情報技術と知的所有権保護

【授業内容及び授業方法】

講義中心に行うが、事例研究、事例調査を通じて基礎概念を立体的、総合的に把握できる能力を養う。

【授業項目】

- 1. 組織経営と情報
- 2. 情報技術の歴史
- 3. 通信ネットワークの歴史
- 4. 電子商取引とサプライチェーン
- 5. 金融ネットワーク
- 6. 物流ネットワーク
- 7. ネットワークにおけるセキュリティ
- 8. 個人情報の保護
- 9. 情報技術と標準
- 10. 情報化の光と陰

【教科書】

原則として、三上の講義用WEBページ(http://kjs.nagaokaut.ac.jp/mikami/)を参照しつつ授業を進める。 補足資料は適宜教室で配布する。

【成績の評価方法と評価項目】

出席(30%), 演習課題(30%), 中間試験(20%), 期末試験(20%)を総合的に評価して行う。

【留意事項】

※本科目は、eラーニング科目として、科目等履修生、及び聴講生もしくは単位互換協定にかかる特別聴講学生に対して開講されたものであり、本学に通学しなくても遠隔地等の学外から履修できる遠隔授業科目である。よって、これ以外の本学学生は履修できない。

【参照ホームページアドレス】

http://kjs.nagaokaut.ac.jp/mikami/

Mikami's virtual class

講義 2単位 2学期

e-Practice of Management

【担当教員】

(未定)

【授業目的及び達成目標】

企業の目的は、社会に貢献するために、商品の提供活動や随伴活動を通して、資本が生み出す利潤を極 大化することである。

極大化の為に企業が行う諸活動の要素を、企業が基本的に保有する機能や顧客に提供する品質保証体 系を通して、経営の仕組みを考察する。

【授業キーワード】

顧客ニーズ、組織、マーケテイング、経営戦略、標準化、ビジネスモデル、財務会計、情報化、商取引

【授業内容及び授業方法】

授業内容は、授業項目に示したものとそれらに関連するものとする。授業方法は、原則として、次の通り行う ものとする。

- (1)事前に明示する授業項目にかかわるキーワードについて予習する。
- (2)事前に予習を求めたキーワードについて小テストを行う。
- (3)キーワードの解説を含め、授業項目について解説し、質疑応答を受け付けながら、考察を進める。(4)個人別に経営像を描かせ、各人のイメージを議論によって高めさせる。

【授業項目】

- 1. 諸活動と組織の発生
- 2. 組織のパターン
- 3. 企業組織と事業
- 4. 企業活動のための資源
- 5. 機能別要素の役割
- 6. 資源と機能の相関
- 7. 事業の要素
- 8. 事業要素別の仕組み
- 9. 経営者の役割

【教科書】

なし

【参考書】

適宜紹介する

【成績の評価方法と評価項目】

予習に提供するキーワードの予習結果の相互評価の平均値 (50%)授業項目を理解しているかが評価される期末試験の結果 (50%)

【留意事項】

※本科目は、eラーニング科目として、科目等履修生、及び聴講生もしくは単位互換協定にかかる特別聴講学生に対して開講されたものであり、本学に通学しなくても遠隔地等の学外から履修できる遠隔授業科目で ある。よって、これ以外の本学学生は履修できない。

講義 2単位 2学期

e-Introduction to Human Development System

【担当教員】

植野 真臣

【教員室または連絡先】

化学経営情報1号棟309室

【授業目的及び達成目標】

「人間」について考えることは、多くの学問分野共通の話題である。しかし、様々な学問分野では、それぞれ のビューポイントやアプローチをかえて人間について考えている。ここでは、人間のモデル化を考えてきた様々な学問分野を横断的に理解し、それらを統合的に考えることによって、ポストモダン的学問のアプローチを

理解する。 分野は「哲学」、「社会科学」、「心理学」、「文学」、「人工知能」、「数学」、「経済学」からの人間モデルを取 り上げ、それぞれについて理解させる。

【授業キーワード】

人間システム、知識工学、哲学、二元論、社会的構成主義、コミュニケーション、人工知能、数学、経済モデ

【授業内容及び授業方法】

「人間」について考えることは、多くの学問分野共通の話題である。しかし、様々な学問分野では、それぞれのビューポイントやアプローチをかえて人間について考えている。ここでは、人間のモデル化を考えてきた様々な学問分野を横断的に理解し、それらを統合的に考えることによって、ポストモダン的学問のアプローチを 理解する。

分野は「哲学」、「社会科学」、「心理学」、「文学」、「人工知能」、「数学」、「経済学」からの人間モデルを取

り上げ、それぞれについて理解させる。 講義を主体とするが、討論の時間を与え、自分自身で考えさせ、授業に積極的に参加することを前提とす る。評価は、テストを行い評価する。

【授業項目】

- 1. 人間のモデル化
- 2. 知識の表象
- 3. 二元論:主観-客観 4. 社会的構成主義
- 5. 社会的構成主義における科学
- 6. 社会構成主義による教育方法
- 7. 知識のシステム
- 8. 人工知能は実現するのか
- 9. 経済モデリングと人間のモデリング
- 10. 数学は人間と独立か
- 11. 対話としての知識
- 12. コミュニケーション理論
- 13. 知識経営 14. ナレッジマネージメント

【教科書】

なし。

【参考書】

講義のなかで適宜紹介する。

【成績の評価方法と評価項目】

レポートを提出。

【留意事項】

※本科目は、eラーニング科目として、科目等履修生、及び聴講生もしくは単位互換協定にかかる特別聴講学生に対して開講されたものであり、本学に通学しなくても遠隔地等の学外から履修できる遠隔授業科目で ある。よって、これ以外の本学学生は履修できない。

【参照ホームページアドレス】

http://kjs.nagaokaut.ac.jp/ueno 植野研究室ホームページ

e-Basic Statistics for Engineering

【担当教員】

植野 真臣

【教員室または連絡先】

化学経営情報1号棟309室

【授業目的及び達成目標】

実世界の様々な現象は不確かさを含んでおり、そうした現象に関する曖昧な情報から、その現象の本質と なる事柄を読み取る能力が必要である。統計学とはそうした情報処理を客観的に行うための学問である。本講義では、統計学の基礎的考え方に重点を置き、身近な例を挙げながら、データの種類、加工と記述方法、統計的推定と仮説検定など、統計学の初歩について学習することを目的とする。

【授業キーワード】

確率・確率分布・平均・散布度・確率・確率分布・統計的推定・統計的検定

【授業内容及び授業方法】

eラーニング形式の講義型授業で、統計の基礎について学ぶ。途中、演習などを含み、eラーニングによる 学習履歴と最終テストにより評価する。

【授業項目】

- 1. 統計学の概要(1回)
- 2. データの記述(2回)

種類と取り方,分布のとらえ方

- 3. 確率(1回)
 - 確率とは、条件付確率、ベイズの定理
- 4. 確率分布(2回)
- 確率分布, 母数, 離散分布, 連続分布, その他の分布 5. 情報理論(1回)
- - 情報の量の計量化,エントロピー,各種情報量,情報理論
- 6. 統計的推定(3回)
 - 点推定,最尤推定,ベイズ推定,区間推定
- 7. 統計的検定(4回)
- 仮説, 過誤, 母平均・母分散の検定

【教科書】

なし

【参考書】

D. ロウントリー著、加納悟訳、涙なしの統計学、新世社

【成績の評価方法と評価項目】

eラーニングによる学習履歴と最終テストにより評価する。

【留意事項】

※本科目は、eラーニング科目として、科目等履修生、及び聴講生もしくは単位互換協定にかかる特別聴講学生に対して開講されたものであり、本学に通学しなくても遠隔地等の学外から履修できる遠隔授業科目で ある。よって、これ以外の本学学生は履修できない。

【参照ホームページアドレス】

http://kjs.nagaokaut.ac.jp/ueno/

e-情報技術基礎I 講義 2単位 1学期

e-Introduction to Information Technology 1

【担当教員】

全教員

【授業目的及び達成目標】

情報技術(IT)の基礎とその応用についての基礎を学ぶ。

【授業内容及び授業方法】

情報技術(IT)の7つのトピックについて、各専門の教官が各二回、ネット授業で講義、メールで指導が行われる。指定されたWeb上で学習する。また、毎週、掲示板に指示・討論が出されるので毎日、該当Webにアク セスしてほしい。 最終テストはWeb based コンピュータテストで行われ、学習プロセス、テスト結果を持って評 価する。

【授業項目】

- 1. コンピュータ技術と情報
- 2. 通信技術と情報
- 3. 生産と情報
- 4. 生活と情報
- 5. 流通と情報 6. スポーツと情報
- 7. 企業と情報

【教科書】

未定

【成績の評価方法と評価項目】

評価はレポート、期末試験とする。 これらもWeb上で行われる。

【留意事項】

※本科目は、eラーニング科目として、科目等履修生、及び聴講生もしくは単位互換協定にかかる特別聴講 学生に対して開講されたものであり、本学に通学しなくても遠隔地等の学外から履修できる遠隔授業科目で ある。よって、これ以外の本学学生は履修できない。

ネット授業形式をとることから、最初のガイダンスで方法をよく聞くこと。

e-Operations Research

【担当教員】

大里 有生

【教員室または連絡先】

化学経営情報1号棟409室

【授業目的及び達成目標】

オペレーションズ・リサーチ(OR)は「経営組織体が、最大の成果をあげるために、限られた資源(人員、材料、資本、設備など)を合理的かつ最適に運用する仕事を、科学的な方法によって行うこと」すなわち「作戦研究」のための方法論である。この「最適方策・行動を決定するための科学的方法論」としてのオペレーションズ・リサーチの意義を理解し、最適方策・行動決定のための数理的方法・手法について学ぶことを目的とする。

【授業キーワード】

最適方策、最適化、数理計画、ネットワーク計画、シミュレーション、確率モデル、需要予測、日程計画、在庫 管理、意思決定、ファジィ理論

【授業内容及び授業方法】

最適化のための数理計画法、ネットワークによる計画技法、シミュレーション解析のための確率モデル論、需要予測のための数理モデル、日程計画・在庫管理のための数理技法、階層化意思決定法・ファジィ最適化などを中心としたオペレーションズ・リサーチの基礎について講述する。

【授業項目】

- 1. 序論
- 2. オペレーションズリサーチの基礎数学
- 3. 線形計画法
- 4. ネットワーク分析
- 5. 動的計画法
- 6. 待ち行列理論
- 7. シミュレーション
- 8. 日程計画管理
- 9. 在庫管理
- 10. 需要予測
- 11. 階層化意思決定法
- 12. 不確実な環境下における意思決定とファジィ最適化

【教科書】

なし。

【参考書】

「経営情報処理のためのオペレーションズリサーチ」、栗原謙三・明石吉三、コロナ社。

「オペレーションズ・リサーチの手法」、近藤次郎、日科技連。

「オペレーションズ・リサーチ」上・下巻、三根久、朝倉書店。

「ファジィ工学入門」、本多中二・大里有生、海文堂出版。

【成績の評価方法と評価項目】

以下に示す2つの個別評価を総合して成績を評価する。

- 1. 適宜提示する課題に対する中間レポート(2回)
- 2. 学期末提示する課題に対する期末レポート(1回)

総合評価における上記個別評価の割合は、中間レポート40%、期末レポート60%とする。

【留意事項】

※本科目は、eラーニング科目として、科目等履修生、及び聴講生もしくは単位互換協定にかかる特別聴講学生に対して開講されたものであり、本学に通学しなくても遠隔地等の学外から履修できる遠隔授業科目である。よって、これ以外の本学学生は履修できない。

【参照ホームページアドレス】

http://alice.nagaokaut.ac.jp

e-情報技術基礎II

講義 2単位 2学期

e-Introduction to Information Technology 2

【担当教員】

全教員

【授業目的及び達成目標】

情報技術(IT)を用いた様々な分野による応用を理解する。

【授業内容及び授業方法】

ネット授業方式の授業である。情報技術(IT)を用いた様々な分野による応用を理解し、新しい応用に対するアイデアを創造する能力を作る。情報技術(IT)を用いた様々な分野による応用について、さまざまな分野(6分野)の専門家に各分野におけるITの応用についてネット授業で講義、メールで指導を行ってもらう。指定されたWeb上で学習する。また、保証、掲示板に指示・討論が出されるので毎日、該当Webにアクセスしてほ しい。最終テストはWeb based コンピュータテストで行われ、学習プロセス、テスト結果を持って評価する。

【授業項目】

- 経済と情報
 教育と情報

- 3. 文化と情報
 4. 医学と情報
 5. 情報とセキュリティ
 6. 環境と情報
- 7. 経営と情報

【教科書】

未定

【成績の評価方法と評価項目】

レポート、期末試験により評価する。

【留意事項】

※本科目は、eラーニング科目として、科目等履修生、及び聴講生もしくは単位互換協定にかかる特別聴講 学生に対して開講されたものであり、本学に通学しなくても遠隔地等の学外から履修できる遠隔授業科目で ある。よって、これ以外の本学学生は履修できない。