電気電子情報数学及び演習Ⅰ

講/演 3単位 1学期

Mathematics for Electric, Electronics and Information Engineering and Exercise 1

【担当教員】

吉川 敏則・中川 健治・佐々木 徹

【教員室または連絡先】

吉川居室:電気1号棟5階510室、内線9526

E-mail tyoshi@vos.nagaokaut.ac.jp

中川(健)居室:電気1号棟5階507室、内線9523

E-mail nakagawa@vos.nagaokaut.ac.jp

佐々木居室:電気2号棟1階174室、内線9559

E-mail sasakit@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

「授業目的]

本科目の前半では、行列とそれに関連した線形代数について、基本的事項を復習し、演習によりその理解を確かなものにする。後半では、多くの電気系専門分野の基礎となる確率・統計的な考え方を習得する。確 率の基本的な性質、および統計的推定と仮説検定について学習し、実際の具体的な問題に対してこれらの 方法を適用できることを目標とする。

[教育目標]

(B)電気電子情報工学分野に共通した基礎的知識を修得している

(B-1)電気電子情報工学分野に必要な基礎的な数学や情報学を理解している

「達成目標〕

- 1. 行列の基本演算と各種の基本行列を理解し、簡単な行列の計算ができる。 2. 連立1次方程式を解く方法を覚え、行列の階数や解の存在の意味について理解する。 3. ベクトル空間、1次独立と1次従属、基底と次元について理解する。

- 4. 行列の階数と行列式の意味を理解し、クラメルの公式などを利用して行列式が計算できる。 5. 内積、正規直交化、線形写像について理解し、それらについての簡単な計算ができる。 6. 固有値と固有ベクトル、2次形式について理解し、それらを用いた簡単な計算ができる。 7. 1次元、2次元のデータについて、度数分布表やヒストグラム、散布図等を作成し、平均、分散、相関係数 等の統計量を正しく計算できる。
- 8. 標本空間と事象、確率の定義、加法定理、条件付き確率と独立性等の基本的な性質を理解し、いろいろ な確率を正しく計算できる。
- 9. 確率変数と確率分布、期待値と分散、モーメントとモーメント母関数、等について理解し、具体的にそれら を正しく計算できる。
- 10. 具体的な確率分布、特に、超幾何分布、二項分布、ベルヌーイ分布、ポアソン分布、幾何分布、一様分 布、正規分布について基本的な性質を理解する。
- 11. 具体的な確率分布、特に、指数分布、ガンマ分布、ベータ分布、コーシー分布、対数正規分布、パレート分布、ワイブル分布について基本的な性質を理解する。
 12. 多次元の確率分布に関する基本的な性質として、同時確率分布と周辺確率分布、条件付き確率分布、独立な確率変数について理解する。
- 13. 多次元の確率分布に関する基本的な性質として、多次元正規分布、独立な確率変数の和の性質につ いて理解する。

【授業キーワード】

正則行列、連立1次方程式、掃き出し法、行列の階数、逆行列、ベクトル空間、1次独立と1次従属、基底と次元、行列式、クラメルの公式、余因子行列、内積、グラム・シュッミットの直交化法、線形写像、固有値と固有ベクトル、データの整理、平均と分散、標本空間と事象、加法定理、条件付き確率、確率変数と確率分布、モーメント、二項分布、ポアソン分布、正規分布、多次元の確率分布、同時確率分布と周辺確率分布、条 件付き確率分布、独立な確率変数

【授業内容及び授業方法】

指定した教科書に沿って講義を行い、その後に関連内容について演習を行う。適宜、小テストを行い、宿題 を出す。また、中間試験と期末試験を行う。

【授業項目】

第1週 行列の基本 第2週 連立1次方程式

第3週 ベクトル空間

第4週 行列の階数と行列式

内積空間 第5週

固有値と2次形式 第6週

第7週 中間試験

第8週 データの整理、平均と分散

第9週 標本空間と事象、確率の定義

第10週 確率変数と確率分布

第11週 具体的な確率分布(1)

第12週 具体的な確率分布(2)

第13週 多次元の確率分布について(1) 第14週 多次元の確率分布について(2)

第15週 期末試験

【教科書】

前半:「演習 線形代数 改訂版」、村上正康他著、培風館

後半:「統計学入門」、東京大学教養学部統計学教室編、東京大学出版会

【参考書】

「新統計入門」小寺平治著、裳華房

【成績の評価方法と評価項目】

前半・後半を合わせて100点満点として評価する。前半と後半のそれぞれにおいて、演習・小テスト等を10点満点、試験(中間または期末)を40点満点とし、演習・小テスト等と試験の合計点が30点未満の者は別途試験を受験することができる。前半または後半の別途試験で60%以上の得点者は、当該の成績を30点とする。

原則として、講義日程、演習や中間・期末等の解答例は講義用ページに随時掲載する。また、前半と後半の成績や試験合格(単位取得)についても同様に掲示する予定である。 講義直後の時間に演習を行うので、予習等の自宅学習が重要となる。また、演習では、状況に応じて宿題を課し、理解度の確認のために適宜小テストを実施する。

【参照ホームページアドレス】

http://inflab.nagaokaut.ac.jp/lecture/ 講義用ページ

電気電子情報数学及び演習!!

講/演 3単位 2学期

Mathematics for Electric, Electronics and Information Engineering and Exercise 2

【担当教員】

打木 久雄・山崎 克之・鈴木 常生

【教員室または連絡先】

打木:電気1号棟6階601室, 内線9527 山崎:電気1号棟5階505室, 内線9521 鈴木:極限センター1号棟206室, 内線9898

【授業目的及び達成目標】

授業目的

電気系教科を学習する上でのコアとなる「複素解析」と「微分方程式」について,種々の数学的解析手法を 習得する. 特に基本的な事項の修得に重点を置いて講義が行われる. さらに数学的手法を解析的かつ体験 的に学習し、多くの問題を解いて理解を深めることを目標とする.

学習·教育目標

- (B) 電気・電子・情報工学分野に共通した基礎的知識を修得している
- (B-1)電気・電子・情報工学分野に必要な基礎的な数学を理解している

達成目標

- ・複素変数の解析関数について理解しコーシー・リーマンの方程式を説明できること。
- ・複素平面における積分について理解し計算できること.
- ・テイラーの展開とローランの展開ができること. ・定係数の1階線形微分方程式を解けること.
- ・定係数の2階線形微分方程式を解けるこ
- ・定係数の連立線形微分方程式を解けること.

【授業キーワード】

複素変数の解析関数,初等関数,複素平面における積分法,複素項の級数,テイラーの展開,ローランの 展開, 留数定理, 余関数, 特殊積分, 変数分離, 線形, 同次, 非同次.

【授業内容及び授業方法】

- 指定の教科書に沿って講義を行う。
- ・授業中に配布されるプリントを併用する
- ・演習時間を設け、講義内容に関する演習問題を解き、習得度を評価する.

【授業項目】

- 第1週:複素数と複素関数 第2週:解析関数
- 第3週:zの初等関数
- 第4週:複素積分
- 第5週:複素項の級数
- 第6週:ティラー級数,ローラン級数第7週:留数定理
- 第8週:中間試験
- 第9週:1階常微分方程式(変数分離形,変数分離形に帰着できる方程式)
- 第10週:1階常微分方程式(完全微分方程式,積分因子型)
- 第11週:1階微分方程式の応用(線形微分方程式,定数変化法,微分方程式の応用) 第12週:2階線形微分方程式(同次一般形,定係数同次,一般解,特性方程式,コーシーの方程式) 第13週:2階線形微分方程式(非同次一般形,解法,モデル化,複素法,一般的解法)
- 第14週:連立線形微分方程式(消去法, 行列法)
- 第15週:期末試験

【教科書】

- 前半:複素関数論, E.クライツィグ著, 丹生慶四郎訳, 培風館,
- 後半:常微分方程式, E.クライツィグ著, 北原和夫訳, 培風館.

【参考書】

工業数学<上><下>, C.R.ワイリー著, 富久泰明訳, ブレイン図書出版.

【成績の評価方法と評価項目】

前半の小テスト等10%,中間試験40%,後半の小テスト等10%,期末試験40%の割合で評価する. 前半 の小テスト等と中間試験の合計得点が100点満点で60点未満の者,あるいは、後半の小テスト等と期末試 験の合計得点が100点満点で60点未満の者には別途試験を実施し、その得点が60点以上の場合は、当 該試験の評価点を60点とする.

【留意事項】

授業時間だけでは、この講義の内容を理解し、その理解を定着させることはできません。授業の復習は必ず するようにしてください。

学習内容について不明な点は、早急に担当教員まで質問に来ること.

Control Theory

【担当教員】

大石 潔

【教員室または連絡先】

実験実習2号棟117号室(内線9525, e-mail:ohishi@vos.nagaokaut.ac.jp)

【授業目的及び達成目標】

【授業目的】

本講義では、制御系解析と設計に対して有力な方法である現代制御理論の基礎を理解し、多入力多出力系のフィードバック制御系を設計できるようにする。そのために、一入力一出力系の制御系解析と設計を行う 古典制御理論の復習も行い、より理解を深める。

【学習·教育目標】

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している。 (C-1)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のすべての分野 の技術者が備えているべき、基本的専門知識を修得している。

【達成目標】

- ・ナイキストの安定判別, ボード線図, 位相余有, 位相遅れ補償・位相進み補償を理解し, 導出できること。
- ・多入力多出力系の状態方程式,伝達関数,固有値を理解し,導出できること。 ・可制御性,可観測性,安定性について,状態フィードバック制御系を設計できること。 ・出力フィードバック制御系と状態オブザーバを理解し,設計できること。

【授業キーワード】

制御工学、古典制御理論、現代制御理論、伝達関数、安定性、状態方程式、状態フィードバック

【授業内容及び授業方法】

【授業内容】

本講義の前半では、古典制御理論の範囲を復習して、多入力多出力系を扱う現代制御理論に入る前に一入力一出力系の制御工学の理解度を深めるようにする。後半では、多入力多出力系を扱う現代制御理論を 講義する。最終的には,多入力多出力系のフィードバック制御系を設計出来ることが目標となるので,制御対象の可制御性・可観測性・安定性の物理的な意味をその導出方法を説明する。その上で,状態フィードバ ック制御系と出力フィードバック制御系の設計方法を説明する。

本講義は,基本的には教科書に沿って行っていく。また,実際の産業界や民生機器で応用されてきた制御 技術を概説するために、近年の学術論文や技術報告などの内容を紹介して講義をしていく。

【授業項目】

第1週 :ラプラス変換と伝達関数(ブロック図, 伝達関数, 時間応答, 定常特性)

第2週~第3週:フィードバック制御の基礎(周波数特性,ベクトル軌跡,ボード線図)

第4週~第5週:フィードバック制御系の安定性と特性補償(ナイキストの安定判別法,位相余有,位相遅れ 補償,位相進み補償)

第6週~第8週:多入力多出力の状態方程式と伝達関数(状態方程式, 伝達関数行列, 固有値, 安定性, 実 際の産業界や民生機器で応用されてきた制御技術の紹介)

:中間試験 第9调

第10週~第12週:可制御性と可観測性(座標変換,可制御性,可観測性,正準系)

第13週~第14週:状態フィードバック制御と安定化(状態フィードバック制御, 直列補償器, 状態オブザーバ 近年の学術論文や技術報告などの内容の紹介)

, 第15週 :期末試験

【教科書】

「制御基礎理論」中野道雄,美多勉 著(昭晃堂)

【参考書】

特に指定しない。

【成績の評価方法と評価項目】

小レポートを4回行う。 小レポートは5点満点とする。 中間試験は30点満点とし, 期末試験は50点満点とする。 小レポート, 中間試験, 期末試験の合計100点満点で総合評価をする。 ただし、60点に満たない者には 。ハレハート、TIIII・マスト、ハスト・ストート 別途レポート又は別途試験を行うことがある。

- 入力一出力系の時間応答と周波数応答の導出方法の理解度と習得度
- ・ナイキストの安定判別法,ボード線図,位相余有,ゲイン余有の物理的な意味と導出方法の理解度と習得 度
- ・多入力多出力系の状態方程式、伝達関数、固有値、ブロック図の物理的な意味と導出方法の理解度と習 得度
- 可制御性と可観測性の導出方法の理解度と習得度。
- ・状態フィードバック制御, 安定化制御, 状態オブザーバ導出方法の物理的な意味と導出方法の理解度と習 得度。

【留意事項】

2年生講義科目の「制御工学基礎」を履修していることが望ましい。 授業時間外学習を促すために,適宜,教科書中の演習問題などの課題を課す。 電子物性工学Ⅰ 講義 2単位 1学期

Electric and Electronic Materials 1

【担当教員】

河合 晃

【教員室または連絡先】

河合 晃 電気1号棟404教員室(内線9512, e-mail: kawai@vos.nagaokaut.ac.jp)

【授業目的及び達成目標】

【授業目的】

物性、エネルギー、情報の3つのコースの学生にとって必須である、固体の電子物性を理解するための基礎的な事項を、電子、原子、分子、結晶などの観点から習得する。本講義における具体的な教育目標および達成目標は次の点である。

【教育目標】

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している (C-1)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のすべての分野 の技術者が備えているべき、基本的専門知識を修得している

【達成目標】

物性、エネルギー、情報の3つのコースの学生がそれぞれのコースに進んだとき、それぞれの課題の中で、 基礎的な量子力学の言葉を用いて固体(格子と電子)を記述し、物性と関連して説明できること。 具体的には

- 1. 波動(微分方程式)を理解する
- 2. 量子化、離散化状態を理解する
- 3. 原子構造を理解する
- 4. 結晶構造を理解する
- 5. 化学結合(共有・イオン・金属)を理解する
- 6. 金属、半導体の基本的性質を理解する

【授業キーワード】

量子力学、電子物性、光物性、熱物性、原子構造、結晶構造、金属、半導体

【授業内容及び授業方法】

最初に、電子物性の基礎となる量子論について概説する。次に、原子構造、結晶構造、エネルギーバンド構 造、金属、半導体について講義する。そして、物質の諸性質(電気伝導性、誘電性、熱伝導性)における電子の振る舞いと役割について講義する。講義は教科書を中心に行い、必要に応じてプリントを配布する。ま た、毎回の講義中に小テストを行うことで、さらに理解を深める。

【授業項目】

- 第1週 量子論の形成 第2週 シュレディンガーの波動方程式 第3週 シュレディンガーの波動方程式
- 第4週 波動関数と原子構造
- 第5週 結合力と結晶構造
- 第6週 フェルミ分布関数と状態密度関数 第7週 結晶の不完全性(格子欠陥)
- 第8週 中間試験
- 第9週 結晶のエネルギーバンド構造
- 第10週 結晶のエネルギーバンド構造
- 第11週 結晶の格子振動と熱的性質 第12週 結晶の格子振動と熱的性質
- 第13週 金属の自由電子模型
- 第14週 半導体の性質
- 第15週 期末試験

【教科書】

「電子物性基礎」電気学会大学講座 (電気学会)

【参考書】

「固体物理学入門」キッテル著 (丸善)

「電子物性工学」電子通信学会編 青木昌治 著(コロナ社)

「電子物性」松澤剛雄 他著 (森北出版)

【成績の評価方法と評価項目】

小テスト(20%)、中間試験(40%)、期末試験(40%)として、その合計で評価する。但し、合計が60点に満たない者には、別途試験を課すことがある。出席率の低い学生は単位が認められない。本講義で学習する 内容は電子物性工学の基本であるが、広範囲にわたっており、授業時間だけでは講義の内容を理解し、その理解を定着させることはできない. そのため、講義に合わせた予習復習が必要である。

【留意事項】

この学習は「電子物性工学II」に発展深化する。

【参照ホームページアドレス】

http://kawai.nagaokaut.ac.jp デバイスプロセス・ナノ計測制御研究室 Basic Signal Theory

【担当教員】

岩橋 政宏

【教員室または連絡先】

電気1-504, 内線9520, iwahashi@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

【授業目的】フーリエ級数展開とフーリエ変換を中心とする直交関数展開について学習し、線形時間不変シ ステムにおける信号の解析手法ならびにその応用について理解を深める。

【学習·教育目標】

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-1)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のすべての分野 の技術者が備えているべき、基本的専門知識を修得している

【達成目標】

- 1. フーリエ級数展開の定義を理解し、代表的な信号波形を展開できる.
- 2. フーリエ級数展開の性質を理解し、その応用について計算ができる.
- 3. フーリエ変換の定義を理解し、代表的な信号波形を変換できる.
- 4. フーリエ変換の性質を理解し、その応用について説明ができる.

【授業キーワード】

フーリエ級数展開, フーリエ変換, パーシバルの定理, サンプリング定理, 畳み込み, 振幅変調

【授業内容及び授業方法】

以下のスケジュールに沿って各授業項目を講義する. 教科書等を参照しつつ, 随時行われる演習, 小テスト , 宿題に毎回真面目に取り組むことで, 効果的に学習できるように配慮する.

【授業項目】

- 直交基底の意味とフーリエ級数展開の定義, 計算方法 $1 \sim 2$
- 3**~**4 フーリエ級数展開の性質
- $5 \sim 6$ 不連続な周期関数、複素指数関数形式での展開
- 中間試験
- 8~9 フーリエ級数からフーリエ変換へ、代表的な波形のフーリエ変換 10~12 フーリエ変換の性質、畳み込み、不連続な関数 13~14 フーリエ変換の応用、振幅変調やサンプリング定理など

- 15 期末試験

【教科書】

「ディジタル信号処理の基礎」島田他著、コロナ社

【参考書】

「信号理論入門」 荻原、岸 共著 朝倉書店 「フーリエ解析」 H. P. スウ著 佐藤平八訳 森北出版

【成績の評価方法と評価項目】

上記の達成目標に掲げた項目について,中間試験(50点)と期末試験(50点)を実施し,両者の合計により 成績を評価する.なお、合計が60点に満たない者には、受講状況によっては、別途試験を課す場合がある

【留意事項】

本講義は電気電子情報工学課程のコア科目の一つである. 特に、情報・通信システムコースの各科目に接 続する.

【参照ホームページアドレス】

http://tech.nagaokaut.ac.jp/

電気電子情報工学実験!

実験 3単位 1学期

Electric, Electronics and Information Engineering Laboratory 1

【担当教員】

電気系全教員

【授業目的及び達成目標】

【授業目的】

電気・電子・情報工学に関する実験の基礎的な知識および技術を修得する。それによって、他の講 義・演習科目の内容を深く理解することを目的とする。実験の計画手順、データの取得、データの処理と報告書の作成手法を修得する。さらに、安全、環境について考える力を身に付ける。

【学習·教育目標】

(D)電気電子情報工学分野での実践的技術者として、個人およびグループで実験を計画遂行し、情報発信できる能力を修得している。

(D-1)実験についての基本的情報を収集し、グループで協調して計画を立てて実験を遂行し、結果をグラフ等で表現し、それらの解釈を簡潔な要約の形でまとめられる。

【達成目標】

- 1. 実験計画の作成手順を修得すること
- 2. 実験技術および機器の使用方法を修得すること。
- 3. 実験データを客観的かつ正確に取得できること。
- 4. データ処理および解析ができること。
- 5. 報告書作成能力を修得すること
- 6. 技術者として安全・環境に関する責任を自覚すること。

【授業キーワード】

プログラミング、整流回路、演算増幅器、半導体材料、波の回折現象、光波の伝搬

【授業内容及び授業方法】

実験は全6テーマから構成され、全テーマ実施に先立って実験ガイダンスを行う。実験は、原則として第1回目に各テーマの実験計画を立てる。第2、第3回目に計画に基づいて実験を行なう。そして、第4回目にレポート作成を行なう。各実験では、決められた実験以外にも自由に計画を立て各人の興味に応じた実験も行える。これらを通じて、実験の計画手順・実験機器の使用法・実験に対する洞察力・レポート作成能力、そして自ら研究・開発する精神を養う。

【授業項目】

【エネルギーシステム工学関連】

1. パワーエレクトロニクス

様々な整流回路の動作原理を理解して電源リアクトル、DCリンクコンデンサ、負荷抵抗との関係を考察する

2. モーションコントロール

円筒型永久磁石型同期電動機(ブラシレスDCサーボモータ)の速度制御系と位置制御系をディジタル制御により実装し、モーションコントロールの基礎を修得する。

【電子デバイス・光波エレクトロニクス工学関連】

1. 物性(I)(半導体)

ファンデアパウ法を用いた半導体材料の抵抗率の測定について理解する。

2. 物性(II)(誘電体)

誘電材料の分極および誘電現象の基礎、特に電気双極子のダイナミクスについて学ぶ。

【情報通信システム工学関連】

1. アナログICとその応用

代表的なアナログICである演算増幅器で実現される回路の動作原理を理解する。

2. マイクロコンピュータと組込みシステム

マイクロコンピュータを用いた組込みシステムの動作原理の基本について習得する。

【教科書】

「学生実験指導書」長岡技術科学大学 電気系作成

【成績の評価方法と評価項目】

全ての実験を行い、かつ全ての実験テーマについてレポートを提出しなければ単位を取得できない。総合成績は全ての実験テーマの点数を加算平均して評価する。採点はテーマごとに100点を満点として行い、60点以上をテーマ合格とする。60点に満たない場合は、テーマ合格となるまで再提出を求める。再提出の期限を守らなかった場合はテーマ不合格とする。一方、提出期限に遅れたり、記載が不十分であったりして不受理の場合はテーマ不合格とし、採点対象としない。各実験テーマの一つでも不合格の場合には、学生実験全体の単位は認定されない。

以下に配点基準を示す。※の項目が優れている場合には特に高い評価を与える。

(1)全体の書式(5%)

書式の遵守。配布資料「実験レポートの書き方(学生実験指導書)」が守られていること。

(2)概要(Abstract)(10%)

語数の遵守。必要にしてかつ十分な内容が明確に記載されていること。

(3)目的(5%)

実験の目的が正確に理解され、目的設定および記載が明確であること。※実験の目的設定にユニークな点が見られる。

(4)理論および実験の背景(15%)

目的との関連性、実験の理論的背景等が正確に理解されていること。※関連の周辺項目が幅広く調査されている。

(5)実験方法(10%)

実験方法について正確に理解し、必要な情報が記載されていること。※実験の方法にユニークな点が見られる。

(6)実験結果(20%)

グラフの書き方、データのまとめ方、図面の記載の順序などが適切であること。

(7)考察(30%)

実験結果と理論・数値計算結果との整合性などが的確に議論されていること。課題がある場合にはそれについて検討していること。※数値計算結果等によって適切な考察が成されている。

(8)まとめ(5%)

目的に対して得られた結果はどうだったか、その理由はなにか、が的確に書いてあること。

なお、テーマ1「コンピュータリテラシー」については、配点基準を(1)全体の書式(10%)、(2)プログラム及びアルゴリズム(30%)、(3)実験結果(20%)、(4)考察(20%)、(5)その他の記述(20%)とする。

【留意事項】

全テーマの実験に出席し、レポートを作成することを単位認定の前提条件とする。やむを得ない事情で出席できない場合には、事前に担当教員と連絡をとること。

レポートは試験の答案に相当する。レポートのコピーは試験の不正行為に相当し、期限に間に合わなかった レポートは試験答案未提出に相当する。やむを得ない事情でレポートの提出が遅れる場合には、事前に担 当教員と連絡をとること。

電気電子情報工学実験II

実験 3単位 2学期

Electric, Electronics and Information Engineering Laboratory 2

【担当教員】

電気系全教員

【授業目的及び達成目標】

【授業目的】

電気・電子・情報工学に関する実験の基礎的な知識および技術を修得する。それによって、他の講義・演習科目の内容を深く理解することを目的とする。実験の計画手順、データの取得、データの処理と報告書の作成手法を修得する。さらに、安全、環境について考える力を身に付ける。

【学習·教育目標】

(Ď)電気電子情報工学分野での実践的技術者として、個人およびグループで実験を計画遂行し、情報発信できる能力を修得している。

(D-1)実験についての基本的情報を収集し、グループで協調して計画を立てて実験を遂行し、結果をグラフ等で表現し、それらの解釈を簡潔な要約の形でまとめられる。

【達成目標】

- 1. 実験計画の作成手順を修得すること。
- 2. 実験技術および機器の使用方法を修得すること。
- 3. 実験データを客観的かつ正確に取得できること。
- 4. データ処理および解析ができること。
- 5. 報告書作成能力を修得すること
- 6. 技術者として安全・環境に関する責任を自覚すること。

【授業キーワード】

ディジタル制御系、高電圧コンデンサ放電回路、ケーブルの伝送特性、組込みシステム、分極および誘電現象、光デバイス

【授業内容及び授業方法】

原則として第1回目に各テーマの実験計画を立てる。第2、第3回目に計画に基づいて実験を行なう。そして、第4回目にレポート作成を行なう。各実験では、決められた実験以外にも自由に計画を立て各人の興味に応じた実験も行える。これらを通じて、実験の計画手順・実験機器の使用法・実験に対する洞察力・レポート作成能力、そして自ら研究・開発する精神を養う。

【授業項目】

【エネルギーシステム工学関連】

1. 放電・プラズマ

プラズマの基本物理量の測定技術を習得するとともに、プラズマの基本的性質を理解する。

2. 交流電動機の制御

話導電動機のパラメータ測定や負荷試験を通じて種々の運転特性を理解するとともに、インバータを用いた可変速制御法についても理解する。

【電子デバイス・光波エレクトロニクス工学関連】

1. 物性(III)(磁性体)

基本的な磁気現象を強磁性体や高温超伝導体をモデルとして検討しながら習得する。

2. 半導体光素子

発光ダイオード、半導体レーザ、及びフォトダイオードの基本特性を実際に測定して光デバイスに関する理解を深める。

【情報通信システム工学関連】

1. 高周波波形処理•伝送

ケーブルの伝送特性(周波数特性、パルス特性、整合、等)について理解する。

2. DSPを用いた信号処理

ディジタルシグナルプロセッサ(DSP)を用いたディジタルフィルタの設計と実現。

【教科書】

「学生実験指導書」長岡技術科学大学 電気系作成

【成績の評価方法と評価項目】

全ての実験を行い、かつ全ての実験テーマについてレポートを提出しなければ単位を取得できない。総合成績は全ての実験テーマの点数を加算平均して評価する。採点はテーマごとに100点を満点として行い、60点以上をテーマ合格とする。60点に満たない場合は、テーマ合格となるまで再提出を求める。再提出の期限を守らなかった場合はテーマ不合格とする。一方、提出期限に遅れたり、記載が不十分であったりして不受理の場合はテーマ不合格とし、採点対象としない。各実験テーマの一つでも不合格の場合には、学生実験全体の単位は認定されない。

以下に配点基準を示す。※の項目が優れている場合には特に高い評価を与える。

(1)全体の書式(5%)

書式の遵守。配布資料「実験レポートの書き方(学生実験指導書)」が守られていること。

(2)概要(Abstract)(10%)

語数の遵守。必要にしてかつ十分な内容が明確に記載されていること。

(3)目的(5%)

実験の目的が正確に理解され、目的設定および記載が明確であること。※実験の目的設定にユニークな 点が見られる。

(4)理論および実験の背景(15%)

目的との関連性、実験の理論的背景等が正確に理解されていること。※関連の周辺項目が幅広く調査さ れている

(5)実験方法(10%)

実験方法について正確に理解し、必要な情報が記載されていること。※実験の方法にユニークな点が見ら れる。

(6)実験結果(20%, ただしテーマ4については30%)

グラフの書き方、データのまとめ方、図面の記載の順序などが適切であること。 (7)考察(30%, ただしテーマ4については20%)

実験結果と理論・数値計算結果との整合性などが的確に議論されていること。課題がある場合にはそれに ついて検討していること。※数値計算結果等によって適切な考察が成されている。

(8)まとめ(5%)

目的に対して得られた結果はどうだったか、その理由はなにか、が的確に書いてあること。

【留意事項】

全テーマの実験に出席し、レポートを作成することを単位認定の前提条件とする。やむを得ない事情で出席できない場合には、事前に担当教員と連絡をとること。レポートは試験の答案に相当する。レポートのコピーは試験の不正行為に相当し、期限に間に合わなかったレポートは試験を答案未提出に相当する。やむを得ない事情でレポートの提出が遅れる場合には、事前に担 当教員と連絡をとること。

電気電子情報工学実験Ⅲ

実験 3単位 1学期

Electrical, Electronics and Information Engineering Laboratory 3

【担当教員】

電気系全教員

【授業目的及び達成目標】

【授業目的】

電気工学、電子工学、情報工学に関する諸テーマについて、これまで学んだ専門的知識をもとに、実験を計画的に遂行する。また、結果を正確に解析かつ工学的に考察し、講義で得た知識をより確かなものとするとともに、期限内にまとめる能力を身につける。さらに、安全、環境について考える力を身に付ける。本科目にお ける具体的な学習教育目標および達成目標は次の点である。

【学習教育目標】

- (D)電気電子情報工学分野での実践的技術者として、個人およびグループで実験を計画遂行し、情報発 信できる能力を修得している。
- (D-1)実験についての基本的情報を収集し、グループで協調して計画を立てて実験を遂行し、結果をグラフ等で表現し、それらの解釈を簡潔な要約の形でまとめられる。

【達成目標】

- 1. 実験計画の作成手順を修得すること
- 2. 実験技術および機器の使用方法を修得すること。
- 3. 実験データを客観的かつ正確に取得できること。
- 4. データ処理および解析ができること。
- 5. 報告書作成能力を修得すること
- 6. 技術者として、安全・環境に関する責任を自覚すること。

【授業キーワード】

交流電動機、プラズマ、TV映像信号、ディジタル信号処理、磁性体、分布定数線路

【授業内容及び授業方法】

各実験テーマについてグループ毎に、実験計画の作成、実験の実施、報告書の作成を行う。

【授業項目】

1. 交流電動機の特性と制御

(誘導電動機のパラメータ測定や負荷試験を通じて種々の運転特性を理解するとともに、インバータを用い た可変速制御法についても理解する。)

2. プラズマ

(プラズマの基本物理量の測定技術を習得するとともに、プラズマの基本的性質を理解する。)

3. 高周波波形処理·伝送(II)

(テレビジョン信号を用いた波形や特性の変化と画像の変化の実験)

4. DSPを用いた信号処理

(ディジタルシグナルプロセッサ(DSP)を用いたディジタルフィルタの設計と実現)

5.物性(IV)

(基本的な磁気現象を強磁性体や高温超伝導体をモデルとして検討しながら習得する。)

6. マイクロ波の測定

(マイクロ波装置の動作原理、基本的諸特性および装置の取扱方法を習得する。)

【教科書】

「学生実験指導書」長岡技術科学大学電気系作成

【参考書】

各テーマの担当教員が適宜指示する

「実験レポートの書き方、その他関連資料」長岡技術科学大学電気系作成

【成績の評価方法と評価項目】

エネルギーシステムコース所属の学生は、実験テーマ1、2、4、5、電子デバイス・光波エレクトロニクスコース エネルヤーシスケムコース所属の学生は、美験ケーマ1、2、4、3、電子ケハイス・元波エレクトロークスコース所属の学生は、実験テーマ2、3、5、6、情報通信システムコース所属の学生は、実験テーマ1、3、4、6の全ての実験を行い、かつ全ての実験テーマについてレポートを提出しなければ単位を取得できない。総合成績は全ての実験テーマの点数を加算平均して評価する。採点はテーマごとに100点を満点として行い、60点以上をテーマ合格とする。60点に満たない場合は、テーマ合格となるまで再提出を求める。再提出の期限を守らなかった場合はテーマ不合格とする。一方、提出期限に遅れたり、「学生実験指導書」および「実験レポートの書き方、その他関連資料」に示されている書式・内容で作成されていないレポートは受理されない。不受理の場合は対象でなり、採点対象としない。各実験テーマの一つでも不合格の場合には、学生を含め、 生実験全体の単位は認定されない。

以下に配点例を示す。

1)全体の書式(5%)

書式の遵守。配布資料「実験レポートの書き方(学生実験指導書)」が守られていること。

2) 概要(Abstract)(10%)

語数の遵守。必要にしてかつ十分な内容が明確に記載されていること。 3)目的(5%)

実験の目的が正確に理解され、目的設定および記載が明確であること。

- ※実験の目的設定にユニークな点が見られること。
- ※実験の目的設定にユニーラな点が見られること。 4)理論および実験の背景(15% 但し、「3. 高周波波形処理・伝送(II)」は10%)目的との関連性、実験の理論的背景等が正確に理解されていること。 ※関連の周辺項目が幅広く調査されていること。

- (E) 実験方法(10% 但し、「3. 高周波波形処理・伝送(II)」は5%) 実験方法について正確に理解し、必要な情報が記載されていること。 ※実験の方法にユニークな点が見られること。

- 6) 実験結果(20%)

- グラフの書き方、データのまとめ方、図面の記載の順序などが適切であること。 7)考察(30% 但し、「3. 高周波波形処理・伝送(II)」は40%) 実験結果と理論・数値計算結果との整合性などが的確に議論されていること。課題がある場合にはそれにつ いて検討していること。
- ※数値計算結果等によって適切な考察が成されていること。
- 8) まとめ(5%)
- 目的に対して得られた結果はどうだったか、その理由はなにか、が的確に書いてあること。
- ※の項目が優れている場合には特に高い評価を与える。

【留意事項】

全テーマの実験に出席し、レポートを作成することを単位認定の前提条件とする。やむを得ない事情で出席

できない場合には、事前に担当教員と連絡をとること。
レポートは試験の答案に相当する。レポートのコピーは試験の不正行為に相当し、期限に間に合わなかった レポートは試験答案未提出に相当する。やむを得ない事情でレポートの提出が遅れる場合には、事前に担 当教員と連絡をとること。

電気電子情報工学実践演習A

演習 2単位 2-3学期

Practical Design Project in Electrical, Electronics and Information A

【担当教員】

電気系全教員

【教員室または連絡先】

【担当教員】

電気系全教員

【教員室または連絡先】 電気系全教員

【授業目的及び達成目標】

【授業目的】

電気電子情報工学に関する実験の基礎的な知識および技術を修得し、これらを基盤としたデザイン設計能力を養う。それによって、他の講義・演習科目の内容を深く理解するとともに、エンジニアリングにおける問題解決能力を養うことを目的とする。また、実験の計画手順、データの取得、データの処理と報告書の作成手法を修得する。さらに、安全、環境について考える力を身に付ける。さらに、電気電子情報工学分野での実践的技術者として、個人およびグループで実験を計画遂行し、情報発信できる能力を修得する。本演習における具体的な学習教育目標および達成目標は次の点である。

【学習教育目標】

(D) 電気電子情報工学分野での実践的技術者として、個人およびグループで実験を計画遂行し、情報発信できる能力を修得している

(D-2) 与えられた目標に対して課題を抽出でき、専門知識・技術を複合させて、社会や自然に及ぼす効果も考慮しつつ、その課題を技術的に解決する手法やシステムを設計でき、また、実現・評価できる

【達成目標】

- 1. 必ずしも一つではない解決手法をデザインすること。
- 2. 実験計画の作成手順を修得すること
- 3. 実験技術および機器の使用方法を修得すること。
- 4. 実験データを客観的かつ正確に取得できること。
- 5. データ処理および解析ができること。
- 6. 報告書作成能力を修得すること。
- 7. 技術者として、安全・環境に関する責任を自覚すること。

【授業キーワード】

電力変換、電気計測、センサー、光素子、材料分析

【授業内容及び授業方法】

本演習Aは、2コース全4テーマから構成されている。2学期には全テーマについて原理・手法等の基礎を全学生が受講する。基本的には、3学期は、各学生は配属されたコースの演習テーマの中から1つを受講する。各テーマの演習スケジュールはガイダンス時の説明に従う。各演習では、担当教員とのディスカッションによって、決められた演習以外にも自由に計画を立て各人の興味に応じた実験も行える。

これらを通じて、演習の計画手順・実験機器の使用法・演習に対する洞察力・レポート作成能力、そして自ら研究・開発する精神を養う。

【授業項目】

【エネルギーコース】

「エネルギー変換技術の実践」

【デバイスコース】

「集積デバイスの作製」

「未知試料の材料評価(X線回折」

「色素レーザーの設計・製作および特性評価」

【教科書】

「実践演習指導書」長岡技術科学大学 電気系作成。

【成績の評価方法と評価項目】

2学期の座学を受講し、各コーステーマの演習を行い、かつ受講したテーマについてレポートを提出し、発表会で発表しなければ単位を取得できない。採点は、2学期座学の課題レポート(30%)、演習レポート(35%)および発表会(35%)として100点を満点として行い、60点以上をテーマ合格とする。

演習レポートの記載基準は、電気電子情報工学実験I、IIに準ずる。

【留意事項】

レポートの提出期限を厳守すること。期限に間に合わなかったレポートは、原則として受理されないので、十分に注意すること。

発表会を正当な理由なく欠席した場合、単位は認められない。

教育職員免許状(工業)の取得を目指す者は、「電気電子情報工学実践演習A」の受講を、教育職員免許状(情報)の取得を目指す者は、「電気電子情報工学実践演習B」の受講を推奨する。詳細は、教職課程科目履修案内を参照のこと。 上記以外の者のうち、エネルギーコース・デバイスコースに配属された者は、「電気電子情報工学実践演習A」の受講を、情報コースに配属された者は、「電気電子情報工学実践演習B」の受講を基本とする。

電気電子情報工学実践演習B

演習 2単位 2-3学期

Practical Design Project in Electrical, Electronics and Information B

【担当教員】

電気系全教員

【教員室または連絡先】

【担当教員】

電気系全教員

【教員室または連絡先】 電気系全教員

【授業目的及び達成目標】

【授業目的】

電気電子情報工学に関する実験の基礎的な知識および技術を修得し、これらを基盤としたデザイン設計能力を養う。それによって、他の講義・演習科目の内容を深く理解するとともに、エンジニアリングにおける問題解決能力を養うことを目的とする。また、実験の計画手順、データの取得、データの処理と報告書の作成手法を修得する。さらに、安全、環境について考える力を身に付ける。さらに、電気電子情報工学分野での実践的技術者として、個人およびグループで実験を計画遂行し、情報発信できる能力を修得する。本演習における具体的な学習教育目標および達成目標は次の点である。

【学習教育目標】

(D)電気電子情報工学分野での実践的技術者として、個人およびグループで実験を計画遂行し、情報発信できる能力を修得している

(D-2) 与えられた目標に対して課題を抽出でき、専門知識・技術を複合させて、社会や自然に及ぼす効果も考慮しつつ、その課題を技術的に解決する手法やシステムを設計でき、また、実現・評価できる

【達成目標】

- 1. 必ずしも一つではない解決手法をデザインすること。
- 2. 実験計画の作成手順を修得すること
- 3. 実験技術および機器の使用方法を修得すること。
- 4. 実験データを客観的かつ正確に取得できること。
- 5. データ処理および解析ができること。
- 6. 報告書作成能力を修得すること
- 7. 技術者として、安全・環境に関する責任を自覚すること。

【授業キーワード】

信号処理、コンピュータソフトウェア

【授業内容及び授業方法】

本演習Bは、1コース全3テーマから構成されている。2学期には全テーマについて原理・手法等の基礎を全学生が受講する。基本的には、3学期は、各学生は配属されたコースの演習テーマの中から1つを受講する。各テーマの演習スケジュールはガイダンス時の説明に従う。各演習では、担当教員とのディスカッションによって、決められた演習以外にも自由に計画を立て各人の興味に応じた実験も行える。

これらを通じて、演習の計画手順・実験機器の使用法・演習に対する洞察力・レポート作成能力、そして自ら研究・開発する精神を養う。

【授業項目】

【情報コース】

「DSPを用いたAMトランシーバの設計」

「実時間制御・路線探索アルゴリズムの設計と実装」

「ハードウェア・ソフトウェアの協調設計」

【教科書】

「実践演習指導書」長岡技術科学大学 電気系作成。

【成績の評価方法と評価項目】

2学期の座学を受講し、各コーステーマの演習を行い、かつ受講したテーマについてレポートを提出し、発表会で発表しなければ単位を取得できない。採点は、2学期座学の課題レポート(30%)、演習レポート(35%)および発表会(35%)として100点を満点として行い、60点以上をテーマ合格とする。

演習レポートの記載基準は、電気電子情報工学実験I、IIに準ずる。

【留意事項】

レポートの提出期限を厳守すること。期限に間に合わなかったレポートは、原則として受理されないので、十分に注意すること。

発表会を正当な理由なく欠席した場合、単位は認められない。

教育職員免許状(工業)の取得を目指す者は、「電気電子情報工学実践演習A」の受講を、教育職員免許 状(情報)の取得を目指す者は、「電気電子情報工学実践演習B」の受講を推奨する。詳細は、教職課程科

目履修案内を参照のこと。 上記以外の者のうち、エネルギーコース・デバイスコースに配属された者は、「電気電子情報工学実践演習 A」の受講を、情報コースに配属された者は、「電気電子情報工学実践演習B」の受講を基本とする。

電気技術英語 演習 1単位 1学期

Technical English in Electrical Engineering

【担当教員】

中山 忠親・芳賀 仁・松崎 周一

【教員室または連絡先】

中山忠親:極限エネルギー密度工学研究センター極限棟201室(内線9889、E-mail nky15@vos) 松崎周一:電気2号棟454室(内線9567、E-mail shmatsu@vos)

【授業目的及び達成目標】

【授業目的】

電気技術英語は、国際化社会および英語での成果発表などのプレゼンテーションにおいて、電気技術者・研究者として必須の能力となる。本講義では、1.英語による技術レポートの記述、2.英語論文、技術資料(特に機器取扱説明書)の読解、3.国際的な科学者・技術者としての国際会議講演発表および質疑応答4.海外事業展開活動や海外技術営業活動におけるネゴシエーション(交渉・折衝)能力、5.コミュニケーション手法に関する基礎能力を養うことを目的としている。本講義における具体的な達成目標は次の点である。

【学習教育目標】

(E)国際的に通用する実践的技術者としての、基礎的な語学力を修得している

【達成目標】

- 1. 基本的な技術単語・熟語・表現法を習得する。
- 2. 技術レポートのアブストラクト程度の英文記述ができる。
- 3. 英語論文、取扱説明書などの技術資料の読解の基礎を習得する
- 4. 技術発表や技術者としての日常会話における表現法の基礎を習得する。

【授業キーワード】

アブストラクト、論文読解、技術英語

【授業内容及び授業方法】

技術レポート作成法の習得を目的として、基本表現、重要構文、重要単語・熟語、記述法について講義する。構文の簡略化、英作文などの課題演習により、英語による基礎表現力を養う。また、英語で書かれた技術資料、取扱説明書や学術論文を読解できる基礎能力を養う。従って、特に指導的技術者、教育研究者として社会で実際に必要とされるケースを想定した実践的な内容に関しての内容を行う。国際的な場で活躍できるネゴシエーションスキルとコミニュケーションスキルを上げるための演習を行う。また、小テストとして、重要技術単語・熟語・用法・文例の試験を行う。

【授業項目】

第1~3週

第1~3週

- ·重要単語·熟語
- ・英文レポート記述のための基本構文・表現法・簡略化法
- ・科学技術者としてのコミュニケーション手法

第4~7週

- ・技術英語における基本文法
- ・取扱説明書などの技術英文の読解法
- ・数式・表・図の表現方法

第8週 中間試験

第9~14週

- ・技術資料・論文の読解法、留学・海外出張における英語表現
- ・技術英語におけるプレゼンテーション法

第15週 期末試験

【教科書】

特に指定しないが、毎回プリントを配布する。

【参考書】

「はじめての技術英語」 宮野 晃 (ベレ出版) 「科学英語の基礎」 平田光男著 化学同人 「やさしい電気・電子英語」 青柳忠克著 オーム社 「技術英文のすべて」 平野 進 編著 丸善

【成績の評価方法と評価項目】

上記達成目標1~4について評価する。

具体的には、中間試験(30点)、期末試験(30点)、レポート(20%)、小テスト(20%)として、総合的に評価する。また、60点に満たない者には特段の理由がある場合に限り別途試験を行うことがある。

【留意事項】

語学の習得においては講義だけでなく自学による継続的な勉強が不可欠である。 適宜課されるレポートに加え、自発的な学習を要する。

【参照ホームページアドレス】

http://etigo.nagaokaut.ac.jp/people/staff/nky15/study/study.html 極限エネルギー密度工学研究センター

電気電子情報工学特別考究及びプレゼンテーション 実験 1単位 1学期

Special Exploration and Presentations in Electrical, Electronics and Information

【担当教員】

電気系全教員

【教員室または連絡先】

指導教員

【授業目的及び達成目標】

この科目は、4年2,3学期に履修する実務訓練(またはこれに代わる課題研究)に対する導入教育となっており、課程主任により指示された教員の指導のもとに、電気電子情報工学に関する英語文献の講読、解析および実験、プログラミング、装置製作等を行う。その過程を適宜レポートにまため、配属された研究室で発表す る。学期末には、その成果をまとめて、各研究室でプレゼンテーションを行う。

授業開始時に、各自の学習テーマに適合するものを選び、これを計画書にまとめる。そして終了時に達成内容を結果報告書に記載する。この過程により、エンジニアリング・デザインの重要性と基本概念を理解する。

学習•教育目標:

- (D)電気電子情報工学分野での実践的技術者として、個人およびグループで実験を計画遂行し、情報発
- 信できる能力を修得している (D-3)組織や社会との関係を意識しながら、研究開発における基礎的・実践的なテーマについて、計画 し遂行した上で考究し、新たな手法やシステムを提案・設計し、情報発信できる。

達成目標:

- (1) 指導教員の助言のもとに、英語の技術文献の内容を理解し、説明できる
- (2) 実務訓練または課題研究で体験する解析および実験、プログラミング、装置製作等に対応できる基礎力 を養う。
- (3) 自分の体験した技術的事項を他人に分かりやすく説明できる。
- (4)技術的内容についての基本的なプレゼンテーション技法を身につける。

【授業キーワード】

考究、プレゼンテーション

【授業内容及び授業方法】

所属研究室の指導教員の指示による。

【授業項目】

所属研究室の指導教員の指示による。

【教科書】

所属研究室の指導教員の指示による。

【参考書】

所属研究室の指導教員の指示による。

【成績の評価方法と評価項目】

本科目への取り組み、レポート、研究等の成果、プレゼンテーションを下記の評価項目に基づいて総合的に 評価する。指導教員の承認を得た「考究及びプレゼンテーション計画書」、「考究及びプレゼンテーション結 果報告書」の提出を評価の前提とする。

[評価項目と配点]

下記の括弧内数字は、[達成目標]の項目の番号に対応している。

- (1) 英語の技術文献の内容を理解し、説明できたか。 (25%) (2) 解析および実験、プログラミング、装置製作等への取り組みと成果。 (25%) (3) 解析および実験、プログラミング、装置製作等の過程を分かりやすく説明できたか。 (25%)
- (4)成果についてのわかりやすいプレゼンテーションができたか。

【留意事項】

前年度末における単位取得状況により、本年度に卒業が見込まれる学生は本科目を履修することができる。

電気電子情報工学特別考究及びプレゼンテーションA 実験 2単位 1学期

Special Exploration and Presentations in Electrical, Electronics and Information A

【担当教員】

電気系全教員

【教員室または連絡先】

指導教員

【授業目的及び達成目標】

原則として、エネルギーシステムコースと電子デバイス・光波エレクトロニクスコースの学生を対象とし た科目である.この科目は、4年2,3学期に履修する実務訓練(またはこれに代わる課題研究)に対する導入 教育となっており、課程主任により指示された教員の指導のもとに、電気電子情報工学に関する英語文献の 講読、解析および実験、プログラミング、装置製作等を行う。その過程を適宜レポートにまとめ、配属された研 究室で発表する。学期末には、その成果をまとめて、電気電子情報工学課程の発表会でプレゼンテーション

授業開始時に、各自の学習テーマに適合するものを選び、これを計画書にまとめる。そして 終了時に達成内容を結果報告書に記載する。この過程により、エンジニアリング・デザインの重要性と基本

学習‧教育目標:

- (D)電気電子情報工学分野での実践的技術者として、個人およびグループで実験を計画遂行し、情報発 信できる能力を修得している
- (D-3)組織や社会との関係を意識しながら、研究開発における基礎的・実践的なテーマについて、計画 し遂行した上で考究し、新たな手法やシステムを提案・設計し、情報発信できる。

達成目標:

- (1) 指導教員の助言のもとに、英語の技術文献の内容を理解し、説明できる。  :
- (2) 実務訓練または課題研究で体験する解析および実験、プログラミング、装置製作等に対応できる基礎力 を養う。
- (3)自分の体験した技術的事項を他人に分かりやすく説明できる。
- (4)技術的内容についての基本的なプレゼンテーション技法を身につける。

【授業キーワード】

考究、プレゼンテーション

【授業内容及び授業方法】

所属研究室の指導教員の指示による。

【授業項目】

所属研究室の指導教員の指示による。

所属研究室の指導教員の指示による。

【参考書】

所属研究室の指導教員の指示による。

【成績の評価方法と評価項目】

本科目への取り組み、レポート、研究等の成果、プレゼンテーションを下記の評価項目に基づいて総合的に評価する。指導教員の承認を得た「考究及びプレゼンテーション計画書」、「考究及びプレゼンテーション結 果報告書」の提出を評価の前提とする。

[評価項目と配点]

下記の括弧内数字は、[達成目標]の項目の番号に対応している。

- (1)英語の技術文献の内容を理解し、説明できたか。 (25%)
- (1) 発品の77年を建解し、説明(2576)。 (2576) (2) 解析および実験、プログラミング、装置製作等への取り組みと成果。 (25%) (3) 解析および実験、プログラミング、装置製作等の過程を分かりやすく説明できたか。 (4) 成果についてのわかりやすいプレゼンテーションができたか。 (25%) (25%)

【留意事項】

前年度末における単位取得状況により、本年度に卒業が見込まれる学生は本科目を履修することができる。 平成22年度以降に第3学年に進級・入学した者は、「電気電子情報工学特別考究及びプレゼンテーション(1単位)」ではなく、本科目を受講のこと。教育職員免許状(工業)の取得を目指す者は、「電気電子情報工 学特別考究及びプレゼンテーションA」の受講を、教育職員免許状(情報)の取得を目指す者は、「電気電子情報工学特別考究及びプレゼンテーションB」の受講を推奨する。詳細は、教職課程科目履修案内を参照 のこと

上記以外の者のうち、エネルギーコース・デバイスコースに配属された者は、「電気電子情報工学特別考究 及びプレゼンテーションA」の受講を、情報コースに配属された者は、「電気電子情報工学特別考究及びプ レゼンテーションB」の受講を基本とする。

電気電子情報工学特別考究及びプレゼンテーションB 実験 2単位 1学期

Special Exploration and Presentations in Electrical, Electronics and Information B

【担当教員】

電気系全教員

【教員室または連絡先】

指導教員

【授業目的及び達成目標】

授業目的:

原則として、情報・通信システムコースの学生を対象とした科目である。この科目は、4年2,3学期に履修する実務訓練(またはこれに代わる課題研究)に対する導入教育となっており、課程主任により指示された教員の指導のもとに、第二章では対する事業が表現の表話、解析および実験、プログラミング、装置製作等なることに関する事業に対する事業が表現していません。 を行う。その過程を適宜レポートにまとめ、配属された研究室で発表する。学期末には、その成果をまとめて 、電気電子情報工学課程の発表会でプレゼンテーションを行う。

授業開始時に、各自の学習テーマに適合するものを選び、これを計画書にまとめる。そして終了時に達成内容を結果報告書に記載する。この過程により、エンジニアリング・デザインの重要性と基本 概念を理解する。

学習•教育目標:

- (D)電気電子情報工学分野での実践的技術者として、個人およびグループで実験を計画遂行し、情報発 信できる能力を修得している
- (D-3)組織や社会との関係を意識しながら、研究開発における基礎的・実践的なテーマについて、計画 し遂行した上で考究し、新たな手法やシステムを提案・設計し、情報発信できる。

達成目標:

- (1)指導教員の助言のもとに、英語の技術文献の内容を理解し、説明できる。
- (2) 実務訓練または課題研究で体験する解析および実験、プログラミング、装置製作等に対応できる基礎力
- (3)自分の体験した技術的事項を他人に分かりやすく説明できる。
- (4)技術的内容についての基本的なプレゼンテーション技法を身につける。

【授業キーワード】

考究、プレゼンテーション

【授業内容及び授業方法】

所属研究室の指導教員の指示による。

【授業項目】

所属研究室の指導教員の指示による。

【教科書】

所属研究室の指導教員の指示による。

【参考書】

所属研究室の指導教員の指示による。

【成績の評価方法と評価項目】

本科目への取り組み、レポート、研究等の成果、プレゼンテーションを下記の評価項目に基づいて総合的に 評価する。指導教員の承認を得た「考究及びプレゼンテーション計画書」、「考究及びプレゼンテーション結 果報告書」の提出を評価の前提とする。

[評価項目と配点]

下記の括弧内数字は、[達成目標]の項目の番号に対応している。

- (1)英語の技術文献の内容を理解し、説明できたか。 (25%)
- (2)解析および実験、プログラミング、装置製作等への取り組みと成果。 (25%) (3)解析および実験、プログラミング、装置製作等の過程を分かりやすく説明できたか。 (25%)
- (4)成果についてのわかりやすいプレゼンテーションができたか。

前年度末における単位取得状況により、本年度に卒業が見込まれる学生は本科目を履修することができる。 平成22年度以降に第3学年に進級・入学した者は、「電気電子情報工学特別考究及びプレゼンテーション 1単位)」ではなく、本科目を受講のこと。教育職員免許状(工業)の取得を目指す者は、「電気電子情報工 学特別考究及びプレゼンテーションA」の受講を、教育職員免許状(情報)の取得を目指す者は、「電気電子情報工学特別考究及びプレゼンテーションB」の受講を推奨する。詳細は、教職課程科目履修案内を参照 のこと

上記以外の者のうち、エネルギーコース・デバイスコースに配属された者は、「電気電子情報工学特別考究 及びプレゼンテーションA」の受講を、情報コースに配属された者は、「電気電子情報工学特別考究及びプ レゼンテーションB」の受講を基本とする。

実務訓練 A 実習 8単位 2-3学期

Internship A (Jitsumu-Kunren A)

【担当教員】

電気系全教員

【教員室または連絡先】

実務訓練指導教員及び実務訓練責任者

【授業目的及び達成目標】

「授業目的]

エネルギーシステムコースと電子デバイス・光波エレクトロニクスコースの学生を対象とした実務訓練である。エネルギーシステム,電子デバイス・光波エレクトロニクスに関連した企業・公的機関において,同分野に関連した研究・開発・生産・運用あるいは教育の実務に従事する。

[学習・教育目標]

- (D)電気電子情報工学分野での実践的技術者として、個人およびグループで実験を計画遂行し、情報発信できる能力を修得している
- (D-3)組織や社会との関係を意識しながら、研究開発における基礎的・実践的なテーマについて、計画し遂行した上で考究し、新たな手法やシステムを提案・設計し、情報発信できる

「達成目標〕

- (1) 実践的・技術的感覚を養う。
- (2) 組織の中で働くことによって、技術に対する社会の要請を知り、学問の意義を認識するとともに、自己の創造性発揮の場を模索する。
- (3) 社会において学理と技術が総合的に応用される場を体験することにより、自己の能力を展開し、練磨する
- (4) 技術に対する問題意識を養い、大学院課程における基礎研究及び開発研究の自立性を高める。
- (5) 論理的なコミュニケーション能力,特に海外実務訓練においては国際的なコミュニケーション能力も高める。

【授業キーワード】

実務, 専門的知識, 問題解決能力, プレゼンテーション, コミュニケーション, 能力啓発, 先見的知見, 技術者倫理

【授業内容及び授業方法】

訓練内容は、実務訓練機関の業務のうち、概ね工学部卒業後間もない者が従事する程度の業務とする。実施期間は、第4学年の2学期と3学期中とする。

実務訓練開始時に、各自が向上させたいテーマを設定する。この過程により、単に実社会での技術の習得のみならず、エンジニアリング・デザインの能力増進を図る。

【授業項目】

実務訓練指導教員及び実務訓練責任者の指示による。

【教科書】

実務訓練指導教員及び実務訓練責任者の指示による。

【参考書】

実務訓練指導教員及び実務訓練責任者の指示による。

【成績の評価方法と評価項目】

1. 評価方法

派遣教員(多くの場合、指導教員が派遣される)が作成する「実務訓練調査書」、実務訓練機関の実務訓練責任者の作成する「実務訓練評定書」及び実務訓練終了後に行う「実務訓練成果発表会」により総合的に判断して合否を決める。「実務訓練評定書」の勤務状況欄の出勤日数が36日未満の場合は不合格とする。

- 2. 評価項目
- a. 技術の社会への影響を考慮する態度を身につけたか。(5%)
- b. 実務訓練の仕事と社会の要請との関係を理解しているか。(10%)
- c. 目標達成のために、適正な社会性と良好な人間関係を保つ姿勢があったか。(20%)
- d. 既存のものの理解・評価の上で,自分の能力を総合し,新しい技術等を創り出す創意工夫の努力をしたか。(40%)
- e. 自分が仕事として成し遂げたことを適切な文書として表現し、発表する能力を身につけたか。(25%)

【留意事項】

本科目は工業の教職課程関係科目であり、工業の教育職員免許状の取得を希望する場合は、所属するコースとは関係なく、履修することができる。

実務訓練B 実習 8単位 2-3学期

Internship B (Jitsumu-Kunren B)

【担当教員】

電気系全教員

【教員室または連絡先】

実務訓練指導教員及び実務訓練責任者

【授業目的及び達成目標】

[授業目的]

情報・通信システムコースの学生を対象とした実務訓練である。情報・通信システムに関連した企業・公的機関において、同分野に関連した研究・開発・生産・運用あるいは教育の実務に従事する。

「学習・教育目標]

- (D)電気電子情報工学分野での実践的技術者として、個人およびグループで実験を計画遂行し、情報発信できる能力を修得している
- (D-3)組織や社会との関係を意識しながら、研究開発における基礎的・実践的なテーマについて、計画し遂行した上で考究し、新たな手法やシステムを提案・設計し、情報発信できる

[達成目標]

- (1) 実践的・技術的感覚を養う。
- (2) 組織の中で働くことによって、技術に対する社会の要請を知り、学問の意義を認識するとともに、自己の創造性発揮の場を模索する。
- (3) 社会において学理と技術が総合的に応用される場を体験することにより、自己の能力を展開し、練磨する
- (4) 技術に対する問題意識を養い、大学院課程における基礎研究及び開発研究の自立性を高める
- (5) 論理的なコミュニケーション能力、特に海外実務訓練においては国際的なコミュニケーション能力も高める。

【授業キーワード】

実務,専門的知識,問題解決能力,プレゼンテーション,コミュニケーション,能力啓発,先見的知見,技術者倫理

【授業内容及び授業方法】

訓練内容は,実務訓練機関の業務のうち,概ね工学部卒業後間もない者が従事する程度の業務とする。実施期間は,第4学年の2学期と3学期中とする。

実務訓練開始時に、各自が向上させたいテーマを設定する。この過程により、単に実社会での技術の習得のみならず、エンジニアリング・デザインの能力増進を図る。

【授業項目】

実務訓練指導教員及び実務訓練責任者の指示による。

【教科書】

実務訓練指導教員及び実務訓練責任者の指示による。

【参考書】

実務訓練指導教員及び実務訓練責任者の指示による。

【成績の評価方法と評価項目】

1. 評価方法

派遣教員(多くの場合指導教員が派遣される)が作成する「実務訓練調査書」, 実務訓練機関の実務訓練責任者の作成する「実務訓練評定書」及び実務訓練終了後に行う「実務訓練成果発表会」により総合的に判断して合否を決める。「実務訓練評定書」の勤務状況欄の出勤日数が36日未満の場合は不合格とする。

- 2. 評価項目
- a. 技術の社会への影響を考慮する態度を身につけたか。(5%)
- b. 実務訓練の仕事と社会の要請との関係を理解しているか。(10%)
- c. 目標達成のために、適正な社会性と良好な人間関係を保つ姿勢があったか。(20%)
- d. 既存のものの理解・評価の上で、自分の能力を総合し、新しい技術等を創り出す創意工夫の努力をしたか。(40%)
- e. 自分が仕事として成し遂げたことを適切な文書として表現し、発表する能力を身につけたか。(25%)

【留意事項】

本科目は情報の教職課程関係科目であり、情報の教育職員免許状の取得を希望する場合は、所属するコースとは関係なく、履修することができる。

Thesis Research

【担当教員】

電気系全教員

【教員室または連絡先】

指導教員

【授業目的及び達成目標】

技術者としての基礎的素養を課題研究という実践の場で会得する。具体的には、所属研究室において、具 ない有としての基礎的系養を味趣切えどり美酸の場と云待りる。具体的には、別属切れ主において、具体的な研究テーマに取り組み、研究に対する基礎的な素養を身につけると共に、大学卒業生として求められる専門的知識の育成を目指す。特に、問題解決能力の向上や研究成果の取りまとめ方、プレゼンテーション技能を研鑽すると共に、卒業後の社会活動に向けて、技術者・研究者としての人格形成を行う。なお、研究テーマの決定に関しても、学生自身が自主的に加わり、指導教員の下で積極的に研究を進め、なお、研究テーマの決定に関しても、学生自身が自主的に加わり、指導教員の下で積極的に研究を進め、

自己能力の啓発だけでなく、将来への展望を持って目的を達成しようとする先見的知見を養う。さらに、担当 研究テーマが社会に及ぼす影響・効果を理解し、研究を遂行する。

学習•教育目標:

(D)電気電子情報工学分野での実践的技術者として、個人およびグループで実験を計画遂行し、情報発

信できる能力を修得している (D-3)組織や社会との関係を意識しながら、研究開発における基礎的・実践的なテーマについて、計画し 遂行した上で考究し、新たな手法やシステムを提案・設計し、情報発信できる

達成目標:

- (1) 研究に対する自主的な計画能力・問題解決能力(企画力, 考究心)を養い、基礎知識の理解度を深める
- (2) 研究成果をまとめて発表するプレゼンテーション技能を養う
- (3) 与えられた研究課題への取り組みを通して、技術者・研究者として要求される継続的な自己研鑽能力を養うと共に、身につけた知識を実践的に活用する能力(知力)を育成する。

課題研究開始時に研究テーマを決定し、これを課題研究画書にまとめる。そして終了時に達成内容を課題 研究報告書に記載する。この過程により、単に研究室での具体的な研究の達成のみならず、エンジニアリン グ・デザインの能力増進を図る。

【授業キーワード】

専門的知識、問題解決能力、プレゼンテーション、能力啓発、自己研鑽、先見的知見、技術者倫理

【授業内容及び授業方法】

所属研究室の指導教員の指示による。

【授業項目】

所属研究室の指導教員の指示による。

【教科書】

所属研究室の指導教員の指示による。

【参考書】

所属研究室の指導教員の指示による。

【成績の評価方法と評価項目】

「評価方法]

下記の評価項目の評価結果を上に掲げた教育の達成目標の達成度と総合的に照合し括弧内の配点で評 価する。

「評価項目と配点]下記の括弧内数字は、「達成目標]の項目の番号に対応している。

- (1)課題研究報告書の内容とその理解度(40点) (2)課題研究発表会におけるプレゼンテーション技能・質疑応答能力(30点)
- (3)研究室における課題研究に係る研究活動を通じた自己研鑽能力(30点)

Advanced Course in Electromagnetics

【担当教員】

小野 浩司·岡元 智一郎

【教員室または連絡先】

小野浩司:電気1号棟602教員室(内線9528、e-mail:onoh@vos.nagaokaut.ac.ip) 岡元智一郎:電気1号棟405教員室(内線9513、e-mail:okamoto@vos.nagaokaut.ac.jp)

【授業目的及び達成目標】

「授業目的〕

本講義では、電磁気学の中でも波の概念に主軸を置き、波の概念に必要な基礎的な電磁気学の復習を行 った後、最終的に電気系3コース(エネルギーシステムコース、電子デバイス・光波エレクトロニクスコース、情 報通信システムコース)の専門に必要な波動を中心とした電磁気学の応用へと発展させる。まず講義の前半 では、波の概念の習得に欠かせないベクトル解析および基礎電磁気学の知識をまとめて整理・集約した後に、電磁誘導法則とその応用について重点的に学習する。講義の後半では、前半で習得した基礎的な内容をさらに発展させ、光・電磁波の数学的・現象論的な取り扱いを通じて、情報工学、電力工学、デバイス工学 物性工学等における波動の取り扱いを習得する。

[学習·教育目標]

- (C)電気電子情報工学分野の技術者として必要な専門知識を修得している
- (C-1)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のすべての分野の技術者が備えているべき、基本的専門知識を修得している。 [達成目標]
- (1)電磁波の記述に必要なベクトル解析法を習得する。
- (2)マクスウェル方程式の応用について習得する
- (3)電磁波を数学的に記述し、具体的な波動問題に適用できる。 (4)平面波、球面波の概念、さらにベクトル波の基礎について習得する。
- (5) 電磁波の回折現象についてのイメージを説明でき、フラウンホファー回折の式を使って幾何学的な孔か らの回折像の計算が行える。
- (6) 完全誘電体の電磁界の境界条件の証明ができ、ベクトル波の境界面での挙動について説明できる。

【授業キーワード】

電磁誘導、波動、マクスウエル方程式、電磁波、平面波、球面波、ベクトル波、回折、境界条件

【授業内容及び授業方法】

前半では、まずベクトル解析および座標系の変換に関する基礎知識について学習する。その後電磁気学の 基本となる電界、磁界、電磁誘導等に関する基礎方程式について講義する。基礎方程式の応用例として、 電磁エネルギーおよび電磁波に関する知識について解説する。後半では、まず基礎知識として電磁波・光波工学の歴史的経緯を踏まえながら波動の数学的表現にふれ、平面波、球面波、ベクトル波の概念につい で学ぶ。次に電磁波の波動方程式について学び、最終的に、電磁波の誘電体境界面への入射での諸現象、電磁波の回折といった波動現象の初歩へ発展させる。必要な数学的基礎を重視するため、必要に応じて自主演習用のプリントを配布する。さらに実践的観点を重視するため、おりにふれて産業界での波動工学応 用をできる限り例示する。また可能な限り、電気電子情報工学実験の中の光・電波関連実験の内容と連携し、講義の中で学んだことの一部は実際の実験でも経験できるようにしている。

【授業項目】

- 第1~2週 ベクトル解析の基礎
- 第3週 マクスウェル方程式
- 第4週 マクスウェル方程式の応用1(電界、電位、静電誘導) 第5週 マクスウェル方程式の応用2(磁界、ベクトルポテンシャル、電磁誘導)
- 第6週 マクスウェル方程式の応用3(電磁波)
- 第7週 中間試験

- 第8週 電磁波・光波研究の歴史、応用を踏まえた概要説明、数学的記述 第9週 平面波、球面波、ベクトル波の概念、電磁波の基礎 第10週~第11週 電磁波回折の基礎(ホイヘンスの原理からキルヒホッフ回折理論へ)
- 第12週 フラウンホファー回折と光波によるフーリエ変換の基礎
- 第13週~第14週 偏光の取り扱いと電磁波の境界条件
- 第15週 期末試験

【教科書】

特に指定しない。

【参考書】

多数出版されている電磁気学、光学・電磁波に関する教科書のうち、自分にあうと思われるものを一冊購入 することを強く勧める。例えば、山田直平、桂井 誠著「電気磁気学」(電気学会)、鶴田匡夫著「応用光学III 」(培風館)等がある。

【成績の評価方法と評価項目】

宿題(20%)、中間試験(40%)、期末試験(40%)としてその合計で評価する。

【留意事項】

「電気磁気学及び演習I・II」を習得しているか同等以上の知識を持っていること。 【授業時間外の学習】 授業時間だけでは、この講義の内容を理解し、その理解を定着させることは容易ではありません。授業の要所要所で演習等を執り行いますので、その勉強を中心に復習を必ずするようにしてください。

プロジェクト指向プログラミング【

演習 2単位 1学期

Project-Based Programming 1

【担当教員】

吉川 敏則・江 偉華・木村 宗弘・山本 和英

【教員室または連絡先】

吉川:電気1号棟510号室, 内線9526, E-mail: tyoshi@vos.nagaokaut.ac.jp 江:極限センター201号室, 内線:9892, E-mail: jiang@vos.nagaokaut.ac.jp 木村:電気1号棟607号室, 内線9540, E-mail: nutkim@vos.nagaokaut.ac.jp 山本:電気1号棟508号室, 内線9524, E-mail: yamamoto@jnlp.org

【授業目的及び達成目標】

「授業目的]

電気・電子・情報工学分野の技術者として必要な自然科学の素養を養うために、いくつかの数値計算技術を 修得する。特に、数学的意味とプログラミング手法との対応関係を考慮しながら実践的なプログラミング技術 の修得を目的とする。

(C) 電気電子情報工学分野の技術者として必要な専門知識を修得している。

(C-1)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のすべての分野 の技術者が備えているべき、基本的専門知識を修得している。

[達成目標]

計算機の基本的な操作(Windows、エディタ、電子メール、ブラウザ)ができること。 以下に示す手法のアルゴリズムの理解、およびこれらのプログラミングがC言語でできること。

1.シンプソン公式による数値積分

- 2.オイラー法またはルンゲ・クッタ法による常微分方程式の解法
- 3. 二分法またはニュートン法による非線形方程式の解法
- 4.ラグランジュの方法またはスプライン関数によるデータ補間
- 5.ガウス法またはガウス・ジョルダン法による連立一次方程式の解法

以上の基礎的知識を活用して電気・電子・情報工学分野における実践的な課題(プロジェクト)に対応する能 力を身につけること。

【授業キーワード】

アルゴリズム、数値計算法、プログラミング技術、C言語、Windows

【授業内容及び授業方法】

すべての授業を情報処理センター演習室で行なう。Windows上でC言語を用いた演習を行ない、全員がプロ グラムを作成、課題を提出する形式を取る。出席の登録や課題の提出はブラウザを通じて行う。

【授業項目】

第1週 計算機の基本的な操作 第2~4週 C言語の文法概略とプログラミング技術

第5週 非線形方程式の解法

第6週 常微分方程式の解法

第7週 数值積分法

第8~9週 データ補間法

第10~12週 連立一次方程式の解法

第13~15週 実践課題(プロジェクト)

【教科書】

授業中にプリントを紙またはPDF形式で配布する。また、同時に与える課題によって演習を行なう。

C言語初級者にはC言語に関する学習書の購入を勧める。以下に例を挙げる。

- ・柴田望洋,新版明解C言語入門編. ソフトバンククリエイティブ. ・ハーバート シルトなど,独習C. 翔泳社. ・林晴比古,新C言語入門ビギナー編. ソフトバンククリエイティブ.

【成績の評価方法と評価項目】

演習中に与える課題の達成度(20点)と各演習において提出するプログラムの達成度(80点)を対象に成績を 評価する。プログラムは、数値計算の基礎的課題(5週~12週)に対して50点、実践課題(13週~15週)に 30点を与える。

【留意事項】

原則として、C言語の初級知識を持つことを前提に演習を行なう 演習の進行に伴い、必要に応じてC言語の復習を行うことが望ましい。また、課題に関しては、状況に応じて 宿題とする場合がある。

【参照ホームページアドレス】

http://nlp.nagaokaut.ac.jp/PBP1 プロジェクト指向プログラミング I (自然言語処理研究室) Project-Based Programming 2

【担当教員】

中川 匡弘

【教員室または連絡先】

電気1号棟609室 内線9535

【授業目的及び達成目標】

[授業目的]

電気・電子・情報工学分野の技術者として必要な実践的シミュレーション技術、更にはマルチメディア 表現技術の基礎を、プログラミング演習を通じて習得する. 特に、対象となる具体的システムとそのモ デリングから導出される方程式との対応関係を学習し、視覚化ツールを併用した基礎的且つ実践的なプ ログラミング能力を会得する.

[教育目標]

(C)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいず れかの分野あるいは複数にまたがる分野における技術者として必要な専門知識を習得している (C-1)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」の すべての分野の技術者が備えているべき、基本的専門知識を修得している.

[達成目標]

- 1. 独立成分分析について理解し、音声分離への応用プログラミングができる. 2. 有限要素法の基礎を理解し、電場解析への応用プログラミングができる. 3. 固有変換・特異値分解を理解し、画像処理への応用プログラミングができる.
- 4. 課題を独自に考案し、計画を立て、実行し、結果についてプレゼンテーションできる.

【授業キーワード】

独立成分分析、有限要素法、固有変換、音声処理、情報メディア、図形処理、画像処、マルチメディア表現 、シミュレーション

【授業内容及び授業方法】

PBPIの講義内容を受け、具体的な問題とそのモデル化により誘導される方程式の説明をした上で、信号処理、情報通信、電場解析等、具体的な問題において必要とされる実践的なシミュレーション技法を、マルチメ ディア表現技術との関連性を明確にし、講述する. また、情報メディア処理や図形処理を支援するプログラミング言語「MATLAB」をツールとして活用し、自発的に考案する課題に対して、プログラミングを実際に行い ながら実践的シミュレーション技術を習得する.

【授業項目】

1. 独立成分分析、音声分離への応用(第1週~第5週) 脳波解析や話者分離などで近年注目されている数理統計的手法である独立成分分析について学習し、 複数音声の混合信号から原音を再現するシミュレーション実験を行う。 2. 固有変換・特異値分解、画像処理への応用(第6週~第10週)

マルコフ確率場としての画像データの統計的性質と固有変換理論について学習し、マルチメディア基盤技 術の一つである画像圧縮、特徴分析などを例とするシミュレーションを行う.

3. 有限要素法、電場解析への応用(第11週~第12週) 変分法(仮想仕事の原理)、エネルギー停留問題、差分法、有限要素法の基礎について学習し、自由落下 バネの振動、電界分布、半導体のPN接合、キャリア分布などを例とするシミュレーション

4. 自由課題(第13週~第15週)

上記3つの課題を通して学習した事項に加え、学生個人が独自に考案した課題について各種プログラミン グ・シミュレーションを行い、得られた結果についてプレゼンテーションを実施する.

【教科書】

特になし.

【参考書】

- ・「MATLAB活用ブック」小林一行著、秀和システム ・物理・工学系のシミュレーション入門 阿部寛 著 講談社サイエンティフィック
- ・担当教官が必要に応じて適宜資料を配布する

【成績の評価方法と評価項目】

[評価項目] 出席状況・演習・指定課題レポート・自由課題レポート・プレゼンテーション 上記評価項目の評価結果と達成目標の項目の達成度を照合し,総合的(レポート各30点満点 、3回で計90点でプレゼンテーション10点)に評価し、60点以上を合格とする.

【留意事項】

授業毎の内容より理論およびアルゴリズムを整理し、プログラム作成のための計画書として事前にまとめてお

【参照ホームページアドレス】

http:// なし

講義 2単位 1学期

Analog Circuits

【担当教員】

坪根 正

【教員室または連絡先】

電気1号棟306室, 内線: 9558, E-mail: tsubone@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

【授業目的】

アナログ回路を設計・解析するために必要となる電子回路の基礎理論・実践技術を学ぶ。MOSトランジスタを構成要素とする増幅回路の特性を小信号等価回路により解析した後、集積回路に用いられる基本要素回路の特性を理解し、演算増幅器やその応用回路について学習する。

【学習·教育目標】

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-1)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のすべての分野の技術者が備えているべき、基本的専門知識を修得している

【達成目標】

- 1. 小信号等価回路を用いてMOSトランジスタの特性を解析できる。
- 2. 増幅回路の高周波特性を解析できる。
- 3. 集積回路を構成する差動増幅器・バイアス回路の原理を説明できる。
- 4. 演算増幅器の動作を説明できる。

【授業キーワード】

MOSトランジスタ、小信号等価回路、負帰還回路、差動増幅回路、演算増幅器(オペアンプ)

【授業内容及び授業方法】

適宜配布するプリントにしたがって講義を進め、演習問題を解くことで理解度を確認する。

【授業項目】

第1~2週: MOSトランジスタの特性・増幅作用 第3~4週: 小信号等価回路による特性解析

第5~6週: 増幅回路の高周波特性

第7週: 中間試験

第8~10週: アナログ集積回路の基本要素 第11~12週: 負帰還回路・発振回路 第13~14週: 演算増幅器とその応用回路

第15週: 期末試験

【教科書】

教科書は指定しない。

【参考書】

「アナログCMOS集積回路の設計 基礎編」、B. Razavi 著、黒田忠広 訳、丸善「アナログCMOS集積回路の設計 応用編」、B. Razavi 著、黒田忠広 訳、丸善

【成績の評価方法と評価項目】

中間試験および期末試験の得点(各50点)の合計点により100点満点で総合評価する。その結果、60点未満の者に対して別途試験を行う場合がある。この試験で60点以上を獲得すれば、最終成績60点として単位を認定する。

【留意事項】

電子回路の基礎を習得した学生を対象とするので、学部1、2年の「電気回路及び演習I、II」、および、「電子回路」、または、工業高等専門学校や各種専門学校においてこれらに相当する科目を十分に理解している

講義時間に出題する演習問題については、本講義の重要なポイントを含んでいるため、必ず復習し理解すること。

Engineering on Electromagnetic Energy

【担当教員】

江 偉華·菊池 崇志

【教員室または連絡先】

- ・江偉華, 居室:極限センター201号室, 内線:9892, E-mail: jiang@vos.nagaokaut.ac.jp
- ·菊池崇志, 居室: 電気1号棟4階402室, 内線: 9506, E-mail: tkikuchi@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

<授業目的>

電磁エネルギーに関する基本的知識の習得を目的とする. 電気的エネルギー(容量性エネルギー)および 磁気的エネルギー(誘導性エネルギー)の基礎的概念を学び、エネルギー形態としての電磁エネルギーの 発生・蓄積・制御・伝送・変換・計測・応用に関して系統的に学習する.

<学習・教育目標>

- (C)電気電子情報工学分野の技術者として必要な専門知識を修得している。
- (C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者として要求される、発展的な専門知識を修得している。
- <達成目標>
- (1)電磁エネルギーの基本概念について理解する.
- (1) 電磁エネルギーの発生・蓄積・放出・制御・伝送・変換・計測・応用について習得する。 (3) パルスパワー技術の基礎について習得する。 (4) 「物質の第4状態」と呼ばれるプラズマおよび電磁流体力学の基礎を理解する。

- (5) 放電, レーザー工学, 粒子ビーム工学, X線生成の基礎を習得する.

【授業キーワード】

電磁エネルギー, 電磁界, パルスパワー, 放電, レーザー, プラズマ, 粒子ビーム

【授業内容及び授業方法】

最初に、電界・磁界のエネルギー密度に関する基礎知識を整理する. その後、電磁エネルギーの基本的概 念および電磁エネルギーの発生, 蓄積, 放出について学ぶ. 電磁エネルギーの伝送, 整形, 制御の例として, 同軸線路や平行平板構造を用いたパルス形成回路を取り上げる。パルス応答について集中定数と分布定数回路による解法を述べ, パルス圧縮や過度現象の基礎を学ぶ. また, 電磁エネルギーの実用化として, 利用しやすいエネルギー形態(電力,電動力,光,電磁波,放射線など)への変換と電磁エネルギーの広範な応用について学習する.パルスパワー技術,プラズマ,電磁流体力学,放電,レーザー工学,粒子ビーム 工学、X線生成の基礎を習得する. さらに、実用的な応用に欠かせないパワー半導体の原理と応用例について学ぶ.

【授業項目】

- 第1週 本講義の概要説明,電界のエネルギー密度と容量性エネルギー
- 第2週 磁界のエネルギー密度と誘導性エネルギ
- 第3週 電磁エネルギーの発生, 蓄積, 放出
- 第4週 RLC回路とパルス形成回路
- 第5週 同軸線路および平行平板線路と特性インピーダンス
- 第6週 磁気パルス圧縮と電磁エネルギー計測
- 第7週 パワー半導体スイッチング素子
- 第8週 中間試験
- 第9週 放電の基礎
- 第10週 電磁エネルギーの各種変換と応用
- 第11週 パルスパワー技術の基礎 第12週 気体レーザーの基礎
- プラズマと電磁流体力学の基礎 第13週
- 荷電粒子ビームの基礎 第14週
- 第15週 期末試験

【教科書】

「パルス電磁エネルギー工学」八井 浄、江 偉華:電気学会

【参考書】

「プラズマとビームのはなし」八井 浄、江 偉華:日刊工業新聞社

【成績の評価方法と評価項目】

複数回のレポート(40%),中間テスト(30%),期末テスト(30%)で評価する.

【留意事項】

受講者は、物理学および電気磁気学の基礎について習得していることが望ましい。なお,講義時間だけで は、この講義の内容を理解しその理解を定着させることはできません。授業の予習・復習は必ずするようにし てください。

【参照ホームページアドレス】

http://beam201b.nagaokaut.ac.jp/ee/index.html

電磁エネルギー工学(学内専用)

Power Electronics

【担当教員】

近藤 正示

【教員室または連絡先】

電気1号棟307教員室(内線9507, e-mail:kondo@vos)

【授業目的及び達成目標】

<授業目的>

電力用半導体のスイッチングを利用して電力を変換するパワーエレクトロニクス装置の基礎原理,および,各種変換回路の動作と機能,制御方法などを学ぶ。

<学習·教育目標>

(C) 電気電子情報工学分野の技術者として必要な専門知識を修得している。

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分野の技術者として要求される、発展的な専門知識を修得している。

<達成目標>

- (1) 電力用半導体のスイッチングを利用して電力の形態(電圧・電流の大きさ, 直流と交流, 周波数, 位相な
- ど)を変換するパワーエレクトロニクス装置の基礎原理を理解する。
- (2) 各種の変換回路の動作と機能、制御方法を理解し、それぞれの特性計算式を導出できるようになる。

【授業キーワード】

電力用半導体、チョッパ、インバータ、コンバータ

【授業内容及び授業方法】

教科書に従って,下記の項目について板書により講義する。

【授業項日】

- 1.各種の電力用半導体素子:ダイオード、トランジスタ、サイリスタなどの構造と特徴。
- 2.スイッチングによる電力変換の基礎:変換方式と効率、スイッチング波形の解析方法、繰り返し波形。
- 3.直流一直流変換回路(チョッパ):降圧チョッパ,誘導性負荷と帰還ダイオード,昇圧チョッパ,複合チョッパ
- 。 4.直流 - 交流変換回路(インバータ):電圧形インバータ,電流形インバータ,波形整形法,三相ブリッジ回路,スイッチングとスナバ回路,同期整流。
- 5.交流 直流変換回路(整流回路):ダイオード整流回路,半波と全波,他励式インバータと転流,歪と力率補償。
- 6.交流 交流変換(コンバータ):サイクロコンバータ,マトリクスコンバータ,直流リンクと交流リンク。
- 7.共振形変換回路(共振スイッチング):負荷共振,準共振,補助共振。
- なお、講義日程表を第1回講義日に配布する。

【教科書】

金東海:「パワースイッチング工学―パワーエレクトロニクスの基礎理論―」,電気学会大学講座,電気学会(オーム社)

【成績の評価方法と評価項目】

上記の授業項目に関する筆記試験を2回行う。評点は中間試験(50%)と期末試験(50%)の合計とする。

【留意事項】

予備知識としてRL回路およびRC回路の過渡現象を理解しているものとする。

授業時間外学習を促すために,適宜,教科書中の演習問題などの課題を課す。

Electric Power Energy System

【担当教員】

原田 信弘

【教員室または連絡先】

電気1号棟403教員室(内線9511、nob@nagaokaut.ac.jp)

【授業目的及び達成目標】

【授業目的】

巨大回路網である電力系統に関する専門的知識を習得するだけではなく,電力系統の学習を通して,電気 磁気学,回路理論に対する理解を一層深めることを目的とする.

【学習教育目標】

- (C) 電気電子情報工学分野の技術者として必要な専門知識を修得している
- (C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分野 の技術者として要求される、発展的な専門知識を修得している

【達成目標】

- 1. 伝送線, 送受電端部および3巻線変圧器の等価回路の導出法を理解し, 電力系統の等価回路に精通す
- 2. 正常時の電力伝送特性を理解する
- 3. 3相対称座標法の適用法に精通し、電力系統の故障計算方法を修得する
- 4. 系統故障の影響および対策を理解する 5. 系統安定度の概念を理解し、安定度向上対策に精通する
- 6. 進行波理論を理解し、電力系統のサージ現象に精通する

【授業キーワード】

電力系統, 電力伝送, 故障計算, 安定度, サージ現象

【授業内容及び授業方法】

複雑な電力系統回路網の等価回路を求め,正常時の電力伝送特性および故障計算を学習する.これらに 基づき,系統故障の影響およびその対策,系統安定度の考え方を学ぶ.次に,落雷事故などに関連するサージ現象,開閉現象などについて学ぶ.授業は教科書を使用し,講義形式で行う.

【授業項目】

- 1週,電力系統のあらまし
- 2週, 電力系統の等価回路(伝送線,送受電端部,3巻線変圧器の等価回路)
- 3-4週,正常時の電力伝送特性(無効電力の調整,調整設備の協調運用,発電所間の負荷配分,電力潮
- 5-6週,故障計算(3相対称座標法,2機回路,電力系統)
- 7-8週, 系統故障の影響および対策(電圧上昇, 誘導障害, 中性点接地方式, 保護継電設備)
- 9-10週,系統安定度(過渡,定態,安定度向上対策) 11-12週,サージ現象(無損失2導体系,無損失多導体系,損失のある導体系,絶縁防護)
- 13-15週, 開閉現象(電力回路の開放, 電力回路の閉路, 気中アークの動特性, 電力用しや断器)

【教科書】

特に定めない

【参考書】

「電力系統」 林 泉 著 昭晃堂

【成績の評価方法と評価項目】

中間テストまたはレポート(50%)、期末テストまたはレポート(50%)で評価する.

【留意事項】

受講者は電気磁気学および電気回路の基本的な事項を理解していることが望ましい.本教科は,「核エネル -工学」「高電圧工学」「発変電工学」「電気法規・施設管理」と深いかかわりがある. 電気主任技術者の資 格修得を希望する学生は、科目を受講するのが望ましい.

必要に応じて、キーワードに理解を深めるための小レポートを課す.

【参照ホームページアドレス】

http://nob.nagaokaut.ac.jp/lectures.html

電機変換工学 講義 2単位 2学期

Electromechanical Energy Conversion

【担当教員】

伊東 淳一

【教員室または連絡先】

電気2号棟365室 内線9533 itoh@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

<授業目的>

本講義では、磁気エネルギーを仲介として電気 - 電気エネルギー変換や電気 - 機械エネルギー変換を行う電気機械の基本原理について学ぶ。また、各種電気機械を統一的に扱うために一般化回転機を検討し、その数学的表現、エネルギー変換過程、座標変換の適用についても学習する。

<学習・教育目標>

- (C)電気電子情報工学分野の技術者として必要な専門知識を修得している。
- (C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者として要求される、発展的な専門知識を修得している。

<達成目標>

- (1) フレミングの法則やファラデーの法則など基礎的な電磁現象を理解し、数理的に解析できるようになる。 (2) インダクタンスや磁気回路について理解を深め、磁気エネルギー、電磁力に関する数理解析ができるよう になる。
- (3) 電気機械の構成や回転磁界等について理解し、説明できるようになる。
- (4) 各種座標変換と一般化回転機について理解し、説明できるようになる
- (5) 電気システムと機械的な力学システムの相似性について理解し、説明できるようになる。

【授業キーワード】

磁気回路, 電磁エネルギー, 電磁力, 一般化回転機, 座標変換

【授業内容及び授業方法】

教科書に従って,下記の項目について板書により講義する。

【授業項目】

- 第1週本講義の概要説明,電磁エネルギー変換の基礎
- 第2週フレミングの法則、ファラデーの法則 第3週磁気回路とインダクタンス
- 第 4週磁気エネルギーと電磁力
- 第 5週電磁石の動的モデル, 突極性とトルク
- 第6週電気回路と機械システムの相似性
- 第7週中間試験
- 第8週回転機の構造とインダクタンス,電機子巻線と回転磁界
- 第9週運動を伴うコイルのインダクタンス,一般化回転機のインダクタンス第10週一般化回転機の電圧電流方程式とトルク

- 第11週パワーフロー,各種損失,効率 第12週ベクトル変換と行列表現,相対変換と絶対変換 第13週三相一二相変換,回転座標変換,対称座標変換
- 第14週座標変換による統一モデルの導出,統一モデルの意味
- 第15週期末試験

【教科書】

「電気学会大学講義:基礎電気機器学」難波江 章ほか,電気学会

「電気学会大学講座:電気機器学」難波江 章ほか,電気学会

【成績の評価方法と評価項目】

上記の授業項目に関する筆記試験を2回行う。評点は中間試験(50%)と期末試験(50%)の合計とする。

【留意事項】

簡単な微分方程式や行列の取り扱いに関する予備知識,回路網理論などを理解していることが望まれる。な お,授業時間外学習を促すために,適宜,演習問題などの課題を課す。

Plasma Physics and Engineering

【担当教員】

末松 久幸・中山 忠親・鈴木 常生

【教員室または連絡先】

末松:極限エネルギー密度工学研究センター粒子棟203室 電話9894 電子メールsuematsu@vos 中山:極限エネルギー密度工学研究センター極限棟201室 電話9889 電子メールnky15@vos 鈴木:極限エネルギー密度工学研究センター粒子棟206室 電話9898 電子メールsuzuki@vos

【授業目的及び達成目標】

【講義目的】

プラズマに関する基礎知識を学ぶ。特にプラズマの特徴、プラズマの記述法、プラズマの応用等についての 習得を目的とする。

【学習・教育目標】

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者として要求される、発展的な専門知識を修得している

【達成目標】

- (1)プラズマ状態の基本的特徴を理解すること。
- (2)プラズマ記述法を用いて比較的簡単なプラズマ状態について記述できること。
- (3) 主なプラズマ状態の発生法およびその原理を説明できること
- (4)プラズマの応用範囲を認識し、主な応用法の概要を説明できること。

【授業キーワード】

プラズマ、荷電粒子、放電、電磁流体

【授業内容及び授業方法】

最初は、プラズマに関する学習に必要な予備知識を概説する。その後プラズマの記述法について説明す る。応用技術として、プラズマの発生法と計測法について詳しく解説する。最後にプラズマの応用について 具体例を用いて説明する。

【授業項目】

- 第1週 物質の3態
- 第2週 プラズマの定義 第3週 グロー放電、アーク放電、電圧電流波形
- 第4週 気体分子運動論(1)、圧力
- 第5週 気体分子運動論(2)、温度

- 第5週 X件分子運動 (2)、温度 第6週 統計力学(1)、ボルツマン分布 第7週 統計力学(2)、サハの電離式 第8週 非平衡プラズマ、温度測定法 第9週 集団的振る舞い(1)、デバイ遮蔽 第10週 集団的振る舞い(2)、プラズマ振動
- 第11週 電磁界中の振る舞い(1)、サイクロトロン運動
- 第12週 電磁界中の振る舞い(2)、ExBドリフト
- 第13週 応用(1)照明、レーザー
- 第14週 応用(2)核融合
- 第15週 応用(3)エッチング、成膜

【教科書】

特に指定しない。

行村 健編著、"放電プラズマ工学"、電気学会、オーム社、(2008) 堤井信力著、"プラズマ基礎工学(増補版)"、内田老鶴圃、(1995) 八井 浄、江 偉華著:「パルス電磁エネルギー工学」(電気学会、2002)

【成績の評価方法と評価項目】

レポートで評価する。

【留意事項】

「電磁エネルギー工学」を習得しているか同等の知識を持っていること。レポート作成を通じて予習と復習を 行い、講義内容の理解度増進に努めること。

【参照ホームページアドレス】

http://etigo.nagaokaut.ac.jp/suematsu/

Electric Actuators and Its Application Systems

【担当教員】

伊東 淳一

【教員室または連絡先】

電気2号棟365室 内線9533 itoh@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

授業目的:

本講義では、ACサーボモータによる駆動システムについて講義を行う。モータ・サーボ系・制御・センサの4つを柱とする。一般にアクチュエータとしてよく使用されるACサーボモータにおいて、サーボシステム、制御方法、センサについて、そのもで原理と設計法を理解する。そして、電動力システムの応用として、速度と位 置のサーボ系について理解を深め、メカトロニクスやロボティクスのモーション制御の基礎を習得する。 [学習·教育目標]

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している。

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者として要求される、発展的な専門知識を修得している。

達成目標:

- ・永久磁石型同期モータと誘導モータのd-q座標変換を理解し, d-q座標モデルを導出できること。
- ・永久磁石型同期モータの非干渉制御と電流PI制御を理解し、これら制御系を設計できること。 ・かご型誘導モータのベクトル制御を理解し、トルクと磁束の制御法をそれぞれ設計できること。 ・ACサーボモータ用各種センサを理解し、動作原理と使用方法を説明できること。 ・ACサーボモータによる速度サーボ系と位置サーボ系を理解し、これらを設計できること。

【授業キーワード】

AC サーボモータ, 永久磁石型同期モータ, 誘導モータ, ベクトル制御, 速度サーボ, 位置サーボ, センサ

【授業内容及び授業方法】

授業内容:

本講義では、2種類のACサーボモータ、永久磁石型同期モータとかご型誘導モータについて、d-g座標変 換を説明し、制御目的にあったモデル化も説明する。モータのトルクを瞬時に制御することで、電動力応用システムが幅広く産業機器、ロボティクス・メカトロニクス機器に使用されることを説明する。そして、アクチュエ ータであるモータ、状態量の情報源のセンサ、動かす技術の制御系の3つをまとめたものがサーボシステム であることを説明する。

授業方法:

本講義は、基本的には教科書に沿って行っていく。また、最近の技術的なトピックを理解するために、最近 の学術論文及びレポートなどの資料を概説する。

【授業項目】

第1週~第2週:ACサーボモータの概要(用語,定義,サーボモータ,電力変換器,センサ)第3週~第5週:座標変換と回路方程式(d-q座標変換,回路方程式,トルク方程式)第6週~第8週:永久磁石型同期モータの制御(ベクトル制御,非干渉制御,電流制御)

第9週~第10週:かご型誘導モータの制御(ベクトル制御, 非干渉制御, 磁束制御)

第11週~第12週:ACサーボモータ用センサ(位置センサ,速度センサ,電流センサ)

第13週~第14週:速度サーボ系と位置サーボ系(速度制御,2慣性共振系,位置制御,サーボ剛性)

:サーボシステムの実際(製品,応用紹介)

【教科書】

講義はプリントにより行う。

【参考書】

「ACサーボシステムの理論と設計の実際」杉本英彦, 小山正人, 玉井伸三 著(総合電子出版社)

【成績の評価方法と評価項目】

評価方法:

小レポートを4回行う。小レポートは各10点満点として、合計40点満点とする。本講義の最後に総括す る最終レポートを課す。最終レポートは60点満点とする。小レポートと最終レポートの合計点により、 100点満点で成績評価を行う。

評価項目:

- ・ACサーボモータの回路方程式とトルク方程式の物理的な意味と導出方法の理解度
- ・永久磁石型同期モータの制御方法の理解度と、式とブロック図に関する知識の習得度。
- ・かご型誘導モータの制御方法の理解度と、式とブロック図に関する知識の習得度。
- ・ACサーボモータ用各種センサの動作原理と使用方法の理解度。
- ・速度サーボ系と位置サーボ系の設計方法の理解度。

【留意事項】

3年生講義科目の「パワーエレクトロニクス」,「電機変換工学」と「制御理論」を履修していることが望ましい。 なお,授業時間外学習を促すために,適宜,演習問題などの課題を課す。

Robotics

【担当教員】

大石 潔・宮崎 敏昌

【教員室または連絡先】

実験実習2号棟117号室(内線9525, e-mail:ohishi@vos)

【授業目的及び達成目標】

【授業目的】

近年、ロボットの需要は、産業用はもちろんのこと、福祉用、医療用、娯楽用など年々増えている。ロボットは、パワーエレクトロニクスと制御工学を基礎としている。本講義では、ロボットを駆動するためのディジタル制御、運動学、動力学、運動方程式を修得することを目的とする。また、電気エネルギーを運動エネルギーに 変換してモーションコントロールする知識を深める。

1学期

【学習·教育目標】

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している。

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者として要求される、発展的な専門知識を修得している。

【達成目標】

- ・ロボットのアクチュエータ、センサ、機構(運動学)を修得して、基本的なロボットマニピュレータの運動方程 式を理解できること。 ・ロボットの運動学と運動方程式によりロボットの制御の基本を理解すること
- ・ロボット制御の統一的な制御法としての加速度制御法と、ロボット制御の高性能化のための要素技術を理

【授業キーワード】

ロボティクス、運動学、動力学、ディジタル制御、加速度制御、外乱オブザーバ

【授業内容及び授業方法】

【授業内容】

ロボットの状態方程式と運動方程式を理解して構成できる様にするために、運動学(順運動学と逆運動学)と動力学(順動力学と逆動力学)の原理と構成を講述して、ロボットマニピュレータの運動方程式とそのパラメ -タ同定法を理解する。続いて、運動方程式とロボット制御法の関係と設計の基本を講述する。特に、外乱 オブザーバによる統一的な加速度制御法について講述する。最後に、高性能なロボット制御のための要素 技術を講述する。

【授業方法】

ストを行って、修得できる様に授業を進める。また、近年発表された学術論文や解説記事も採り上げて説明 する。

【授業項目】

第1週~第4週:ロボットのアクチュエータ、センサ、機械システム

(アクチュエータ、サーボ機構、センサ、機械システム)

第5週~第7週:ロボットの運動学と運動方程式

(順運動学と逆運動学、座標変換、同次変換、運動方程式、順動力学と逆動力学)

第8週~第11週:ロボットの運動方程式の導出

(ラグランジュ法、ニュートンオイラー法、パラメータ同定、外乱オブザーバ)

第12週~第15週:ロボットの制御法

(分解加速度制御法、加速度コントローラ、力制御、PTP制御とCPT制御、インピーダンス制御)

【教科書】

講義は、配付資料と教科書によって行う。教科書は「ロボットシステム入門」松日良信人、大明淳治著(オーム 社)とする。

【参考書】

参考書は「ロボット制御工学入門」美多勉、大須賀公一著(コロナ社)と「インターユニバーシティ ロボット制 御」大熊繁偏著(オーム社)とする。

【成績の評価方法と評価項目】

【成績の評価方法】 小レポートを2回行い各々20%で評価し、 最終レポートを60%で評価して、これらを合計して総合評価をする。ただし、60点に満たない者には別途レポート又は別途試験を行うことがある。 【評価項目】

- ・ロボットの運動学と動力学の理解度と、基本的なロボットの運動方程式を構成できること。 ・導出された運動方程式によりロボットの制御の理解度と、その基本設計ができること。 ・統一的な制御法の加速度制御方式の理解度と、具体的に外乱オブザーバを用いて構成できること。

【留意事項】

3年生講義科目の「制御理論」を履修していることが望ましい。 授業時間外学習を促すために,適宜,教科書中の演習問題などの課題を課す。

講義 2単位 1学期

Digital Control

【担当教員】

大石 潔・宮崎 敏昌

【教員室または連絡先】

実験実習2号棟117号室(内線9525, e-mail:ohishi@vos)

【授業目的及び達成目標】

【授業目的】

近年、マイクロプロセッサの技術進展は著しく、いろいろな産業分野に応用されて、人々の生活を快適にしてきている。このマイクロプロセッサは、ディジタル制御によりアクチュエータや電源を制御することに多く応用される。本講義では、ディジタル制御(サンプル値制御)の基礎的な内容から入り、現代制御理論をディジタル制御系で実現する方法までを修得することを目的とする。

【学習·教育目標】

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している。

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者として要求される、発展的な専門知識を修得している。

【達成目標】

- ・連続時間系と離散時間系の関係を理解して、状態方程式、極配置、伝達関数を導出できること。 ・離散時間系の安定性・可制御性・可観測性を理解して、導出できること。 ・状態フィードバック、状態オブザーバ、有限制定制御を理解して、設計できること。 ・量子化誤差、エリアシングとその影響を理解し、ディジタル制御系の安定性を習得すること。

【授業キーワード】

ディジタル制御、サンプル値制御、Z変換、制御工学、現代制御理論

【授業内容及び授業方法】

【授業内容】

3年の授業科目「制御理論」で習得した連続時間系の状態方程式、極配置、伝達関数と、離散時間系の状 態方程式、極配置、伝達関数の関係、ラプラス変換とZ変換での制御系の相違を講述する。次に、離散時間系の安定性・可制御性・可観測性を理解して導出できる様に、具体的なシステムを例にあげて講述する。状態フィードバックと状態オブザーバは、モータ制御などの具体的な制御系を例題にあげて講述し、ハレポート課題で実際に設計させて、理解を深める。最後に、授業項目すべてが試験範囲の期末試験を行う。

授業は、教科書と配布プリントで行う。モータ制御などの実際の制御対象をあげて、連続時間系と離散時 間系の関係、状態方程式、極配置、伝達関数、安定性などの項目が、具体的に理解しやすい様にする。ま た、小レポートを行って、習得する様に授業を進める。状態フィードバック制御と状態オブザーバは授業で具体的に設計法を講述し、小レポートを行って、習得する様に授業を進める。さらに、近年発表された学術論 文や解説記事も採り上げて説明する。

【授業項目】

第1週~第4週:連続時間系と離散時間系の関係、Z変換、エリアシング、量子化誤差

第5週~第7週:状態方程式、パルス伝達関数、極配置

第8週~第11週:安定性、可制御性、可観測性

第12週~第14週:状態フィードバック、有限制定制御、状態オブザーバ、ロバスト安定性

第15週:期末試験

【教科書】

講義は、配付資料と教科書によって行う。教科書は「基礎ディジタル制御」美多勉、原辰次、近藤良著(コロ ナ社)とする。

【参考書】

参考書は特にない。

【成績の評価方法と評価項目】

【成績の評価方法】

小レポートを4回行い各10%で合計40%を評価する。期末試験を60%で評価する、これらを合計して総合 評価をする。ただし、60点に満たない者には別途試験又は別途レポートを行うことがある。

【評価項目】

- ・ラプラス変換とZ変換の関係を理解し、状態方程式と伝達関数を導出できること。

- ・Z変面での極配置を理解して、離散時間系の安定性を議論できること。 ・可制御性と可観測性を理解して、状態フィードバックと状態オブザーバを設計できること。 ・実際の離散時間系において、量子化誤差とエリアシングとその影響を理解し、ディジタル制御系のロバスト 安定性を議論できること。

【留意事項】

3年生講義科目の「制御理論」を履修していることが望ましい。 授業時間外学習を促すために,適宜,教科書中の演習問題などの課題を課す。

Laser Engineering

【担当教員】

江 偉華

【教員室または連絡先】

極限エネルギー密度工学研究センター粒子棟201号室

内線(内線): 9892

e-mail: jiang@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

レーザーに関する基礎知識を学ぶ。特にレーザー光の発生原理、レーザー装置の典型的構成、レーザーの 特徴と応用等についての習得を目的とする。

学習教育目標

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している。

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者として要求される、発展的な専門知識を修得している。

達成目標

1) レーザーの発振原理を理解すること

- 2) 典型的なレーザーシステムの基本構成や動作原理を説明できること。
- 3) 各種レーザー装置の特徴および適用範囲について理解すること。
- 4) レーザー光の特徴について理解し、主な応用法の概要を説明できること。

【授業キーワード】

レーザー、光技術、電磁エネルギー、量子効果、コヒーレンス

【授業内容及び授業方法】

最初は、レーザーに関する学習に必要な予備知識を概説する。その後反転分布およびその生成条件について説明する。すべてのレーザーに共通する原理を説明した後に、各種レーザー装置について各々の構成や動作特徴について解説する。最後にレーザーの応用技術について具体例を用いて説明する。教科書を 指定しないが、配布資料に基づいて講義を行う。毎週演習を出題し、翌週の講義時間に答案を回収するとと もに回答例を示す。

【授業項目】

第1週 予備知識(光について、エネルギーの量子化、光の吸収と放出、レーザー光) 第2週 レーザーの基礎(遷移確率、アインシュタイン係数) 第3週 レーザーの基礎(光の減衰と増幅、反転分布、利得係数)

第4週 レーザー発振の原理(共振器)

第5週 レーザー発振の原理(発振しきい値)

第6週 レーザー発振の原理(レート方程式)

第7週 レーザー発振の原理(レート方程式) 第8週 中間試験

第9週 代表的なレーザー(気体レーザー)

第10週 代表的なレーザー(固体レーザー)

第11週 代表的なレーザー(液体レーザー、半導体レーザー)

第12週 代表的なレーザー(エキシマレーザー)

第13週 レーザーの応用技術(モード同期) 第14週 レーザーの応用技術(Qスイッチング、高周波発生)

第15週 期末試験

【教科書】

特に指定しない。

【参考書】

特に指定しない。

【成績の評価方法と評価項目】

宿題・レポート(40%)、中間試験(30%)、期末試験(30%)としてその合計で評価する。

【留意事項】

受講者は、「電磁エネルギー工学」、「プラズマ物性工学」等を受講していることが望ましい。なお、講義時間 だけでは、この講義の内容を理解しその理解を定着させることはできません。授業の予習・復習は必ずする ようにしてください。

【参照ホームページアドレス】

http://beam201b.nagaokaut.ac.jp/laser/index.html レーザー工学(学内専用)

講義 2単位 1学期

Nuclear Energy Engineering

【担当教員】

末松 久幸

【教員室または連絡先】

極限エネルギー密度工学研究センター粒子棟203室 電話9894 電子メールsuematsu@vos

【授業目的及び達成目標】

宇宙の進化の原動力であり、現代・将来の文明を支える主要なエネルギー源である核エネルギーについて、 基本的特性と応用を講述する。とかく危険性だけがクローズアップされがちな文明の利器であるエネルギー 源を正しく理解する。

学習·教育目標

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者として要求される、発展的な専門知識を修得している

達成目標

本科目終了時には、以下の能力を収得していることを目標とする。

- ・原子核中核子1つあたりの結合エネルギーが各種ごとに異なることから、核エネルギーが生み出されること を説明できること
- ・簡単な形状の有限サイズ均質原子炉の臨界方程式を解いて、臨界条件を算出できること
- ・核融合の原理と、これを可能にするプラズマ閉じこめ方法について説明できること
- ・放射線の人体への影響と、それを低減する方法を説明できること。

【授業キーワード】

放射線

放射能

原子炉理論

【授業内容及び授業方法】

原子と原子核の構造と性質、特に、原子核の結合エネルギー、熱核分裂性を有する核種、放射線、ラジオア イソトープ、放射線と物質の相互作用、放射線の取扱い等について理解する。次に中性子の拡散方程式か ら、核分裂を定常的に起こさせるための臨界方程式を導出し、無限および有限サイズで簡単な形状の均質 炉についてこれを解いて原子炉の設計を行う。続いて核融合炉用のプラズマ閉じこめ方法を知る。最後に放 射線の生体への影響、その防護と、廃棄物処理についての知識を深める。

【授業項目】

- 1, 原子と原子核の構造(第1週)
- 2, 原子質量と結合エネルギー(第2週)
- 3, 核反応(第3週)
- 4, 放射能、放射性壊変と放射線の検出(第4週)
- 5, ラジオアイソトープの構造、分離、精製(第5週)
- 6, 核分裂(第6週) 7, 中性子の拡散方程式(第7-8週)
- 8, 均質原子炉の臨界方程式(第9-11週)
- 9, 放射線と物質の相互作用、放射線の発生と生体への影響、放射線の防護(第12週)
- 10. 熱サイクルと原子力発電(第13週)
- 11, ラジオアイソトープの利用(第14週)
- 12、核融合と核融合炉用プラズマ閉じこめ方法(第15週)

【教科書】

特に指定しないが、ラマーシュ著原子炉の初等理論(上)(下)を参照する。

【成績の評価方法と評価項目】

レポートにより評価する。

【留意事項】

. 電磁エネルギー工学、プラズマ物性工学、を履修していることが望ましい。レポート作成を通じて 受講者は、 予習と復習を行い、講義内容の理解度増進に努めること。

【参照ホームページアドレス】

http://etigo.nagaokaut.ac.jp/suematsu/ 末松久幸のページ

高電圧工学 講義 2単位 1学期

High Voltage and Discharge Engineering

【担当教員】

末松 久幸・江 偉華

【教員室または連絡先】

(末松)粒子棟203室 内線9894 電子メール suematsu@nagaokaut.ac.jp

(江)粒子棟201室 内線9892 電子メールjiang@nagaokaut.ac.jp

【授業目的及び達成目標】

授業目的

高電圧工学は,発電、送電、配電、変電の他、電気機器の絶縁設計の基礎となる教科である。本講義では 高電圧現象の物理過程を電気工学の立場から述べ,各種の高電圧・大電流現象,高電圧機器,高電圧絶 縁、高電圧測定、雷現象、高電圧応用などについて学ぶ。

学習•教育目標

(C) 電気電子情報工学分野の技術者として必要な専門知識を修得している。

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分野の技術者として要求される、発展的な専門知識を修得している。

達成目標

本科目終了時には、以下の能力を有することを目標とする。

- ・気体中の高電圧・放電現象、絶縁破壊、パッシェンの法則について理解すること。
- ・放電の電流-電圧特性、その各電流領域での放電形態の変化を説明できること。
- ・高電圧発生装置、計測装置についてその動作原理を説明できること。
- ・高電圧を応用した機器についての知識を有すること。

【授業キーワード】

絶縁破壊、高電圧機器、高電圧・大電流計測

【授業内容及び授業方法】

高電圧工学の基礎となる放電現象を物理的に理解した上で、高電圧発生法、絶縁破壊、高電圧計測法、 雷放電、試験法、応用機器などについて学ぶ。毎週演習を出題し、翌週の講義時間に答案を回収するととも に回答例を示す。

【授業項目】

- 1. 高電圧現象の基礎
 - (気体分子の熱運動,衝突素過程,電離平衡) (第1-2週)
- 2. 放電理論

(タウンゼント理論, ストリーマ理論, パッシェンの法則, 電子なだれ, α 作用, β 作用, γ 作用) (第3-5週)

- 3. 各種放電の特性 (コロナ放電, グロー放電, アーク放電, 雷放電、絶縁破壊、気体中・液体中・固体中・真空中・沿面放電の 諸特性) (第6-8週)
- 4. 高電圧発生装置

(直流高電圧発生装置,交流高電圧発生装置,パルス高電圧発生装置)(第9-10週)

5. 高電圧・大電流計測

(交流・直流・パルス高電圧の測定法,大電流測定法) (第11-12週)

6. 高電圧機器

(粒子加速器, X線発生装置, 電気集塵, 電気溶接, 放電化学, がいし) (第13-14週)

7. 高電圧試験法

(第15週)

【教科書】

特に指定しない。

【参考書】

特に指定しない。

【成績の評価方法と評価項目】

宿題・レポート(40%)、中間試験(30%)、期末試験(30%)としてその合計で評価する。

【留意事項】

受講者は、「電磁エネルギー工学」、「プラズマ物性工学」を受講していることが望ましい。なお、講義時間だけでは、この講義の内容を理解しその理解を定着させることはできません。授業の予習・復習は必ずするようにしてください。

【参照ホームページアドレス】

http://beam201b.nagaokaut.ac.jp/hv/index.html 高電圧工学(学内専用)

電機設計学及び製図

講義 2単位 1学期

Electrical Machine Design and Drafting

【担当教員】

中村 雅憲・齋藤 達・大石 潔・近藤 正示・伊東 淳一

【教員室または連絡先】

実験実習2号棟117号室(内線9525, e-mail:ohishi@vos.nagaokaut.ac.jp)

【授業目的及び達成目標】

【授業目的】

電気機器の構造、動作原理、設計の指針となる考え方を習得し、指定された機器の設計を試みた上で、製 図する手法を習得する。

【学習‧教育目標】

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している (C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分野 の技術者として要求される、発展的な専門知識を修得している。

【達成目標】

・変圧器の設計方法を理解して、変圧器の設計表を計算して作成できること。 ・3相誘導電動機の設計方法を理解して、3相誘導電動機の設計表を計算して作成できること。 ・回転機設計の製図方法を理解して、設計した3相誘導電動機の設計図を作成することができる。

【授業キーワード】

モータ設計、トランス設計、電気機器設計法

【授業内容及び授業方法】

【授業内容】

誘導機、変圧器などの電気機器は、磁界と巻線の相互作用で力や電力を発生する。電気機器の容量はこの 磁界を発生させる部分と巻線の部分の積で決定され、これら分配法が設計の大きな指針となる。本講義では、変圧器と3相影導電動機の構造、動作原理を説明して、統一した設計の考え方について講述する。また、 回転機設計の製図法を説明し、3相誘導電動機の製図を作製する。

本講義は、基本的には教科書に沿って行っていくが、講義毎に授業資料のプリントなども配布する。また、本 授業は講義15回と、講義の中で課題として与える演習レポートを自宅学習で行うものである。この演習課題は、レポートして、合計3回提出する。

【授業項目】

- :電気機器設計の基礎原理 1. 第1回
- 2. 第2回~第5回:変圧器の設計法
- 3. 第6回~第10回:3相誘導電動機の設計法
- 4. 第11回~第15回: 3相誘導電動機の製図法

【教科書】

「大学課程 電機設計学 (改訂2版)」竹内寿太郎 原著(オーム社) 「電気工学基礎講座16 電気製図(四訂版)」 福嶋美文 著(朝倉書店)

【参考書】

「基礎電気機器学」電気学会 オーム社、「電気機器学」電気学会 オーム社

【成績の評価方法と評価項目】

【成績の評価方法】

本講義では、演習課題を3回与え、その演習課題のレポートによって成績評価を行う。変圧器の設計表のレ ポートと3相誘導電動機の設計表のレポートは、それぞれ30点満点とする。3相誘導電動機の製図のレポー トを40点満点とする。以上合計100点満点で成績評価する。

【評価項目】

- ・電気機器の設計の原理の理解度と、変圧器の設計法の理解度。
- ・3相誘導電動機の設計法の理解度。
- ・3相誘導電動機の製図法の理解度。

【留意事項】

受講生は、これまでに電気機器学に関する科目を履修していることが望ましい。電気主任技術者の資格取得を希望する学生は、本科目を受講しなければならない。

授業時間外学習を促すために,適宜,教科書中の演習問題などの課題を課す。

Application of Electrical Energy

【担当教員】

菊池 崇志

【教員室または連絡先】

居室:電気1号棟4階402室,内線:9506, E-mail:tkikuchi@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

<授業目的>

現代社会を支える電気エネルギーの利用・応用技術として、電熱システム、照明システムの他、放電・プラズマや粒子ビーム・加速器への応用事例を学び、電気エネルギーの新たな応用と地球環境保全との連携についても認識を深める。本科目はこれまで学習した専門基礎科目および専門科目が、実社会でどのような技術 として応用されているかに焦点を絞ったものである.特に、電気回路、電子回路、電気磁気学などの基礎科目の上に成り立つ電熱工学、照明工学、放電・プラズマ工学、粒子ビーム工学を中核とする電気エネルギー 応用技術に関する知見を広めることを目的とする.

<学習・教育目標>

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者として要求される、発展的な専門知識を修得している

- (1) 基礎的な電熱計算ができ、種々の電熱システムの構成や動作原理を説明できるようになる. (2) 基礎的な照明計算ができ、種々の照明システムの構成や動作原理を説明できるようになる.

- (2) 盆暖的な照明可見ができ、煙ベットにのインスン海域で関ロドが生を成ってどのようになる。 (3) 放電・プラズマの応用技術について、その構成や動作原理を説明できるようになる。 (4) 粒子ビーム・加速器技術について、その構成や動作原理を説明できるようになる。 (5) 電気エネルギー利用技術について理解し説明できるだけでなく、地球環境保全に対する見識も持つ。

【授業キーワード】

電気エネルギー応用技術,電熱システム,照明システム,放電・プラズマ利用,粒子ビーム・加速器技術

【授業内容及び授業方法】

電熱や照明システムに関しては、計算例を解きながら特性計算法を教授し、具体的なシステム構成やその動作原理について説明する. 放電・プラズマや粒子ビーム・加速器への応用に関しては、その発生・生成方 法やシステム構成について説明し、応用事例を紹介する.その他の電気エネルギー変換・利用例として、燃 料電池、レーザーなど最新の応用技術を紹介する、

【授業項目】

電気エネルギーの応用について、本講義の概要説明 第1週

電熱工学(熱伝導,対流,放射,熱抵抗,熱容量,等価回路) 各種電熱システム(電熱材料,抵抗加熱炉,誘導加熱炉) 照明工学(光源,照度,点光源,線光源,面光源) 第2~3週

第4~5调

第6~7週

第8~9週 各種照明システム(白熱電球, 蛍光灯, 水銀ランプ, ナトリウムランプ)

放電・プラズマ応用 第10~11週

第12~13週 粒子ビーム・加速器利用

第14调 その他の電気エネルギー変換応用(電気化学変換,レーザー,電気計測,他)

期末試験 第15週

【教科書】

教科書は指定しない. 講義は配布する資料に基づいて行う.

八坂保能:電気エネルギー工学, 森北出版(2008年) 饗庭貢:電気エネルギー応用,コロナ社(1992年)

【成績の評価方法と評価項目】

レポート(50%)と期末テスト(50%)で評価する.

【留意事項】

電気主任技術者試験の免除を希望する学生は,本科目を受講することが望ましい. 授業時間外学習を促す取り組みについては、適宜授業内容に関する内容を課題レポートとして課す。 発変電工学 講義 2単位 1学期

Power Generation and Transformation Engineering

【担当教員】

原田 信弘

【教員室または連絡先】

電気1号棟403教員室(内線9511、nob@nagaokaut.ac.jp)

【授業目的及び達成目標】

【授業目的】

水力, 火力, 原子力の各発電方式, その他新しい発電方式, 送電・配電方式について修得する. 実際の発電所や変電所等の現地視察や従業者との質疑応答なども行い, エネルギー問題や環境問題も含めた電力 の供給についての最近の話題についても知識を深める.

【学習教育目標】

(C) 電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分野 の技術者として要求される、発展的な専門知識を修得している

【達成目標】

- 1. 水力発電の資源評価と発電性能の評価を習得する
- 2. 水車の比速度と水車の型式選択、ベルヌーイの法則を習得する
- 3. 熱サイクルとカルノー機関、熱力学第1法則、第2法則を習得する 4. 蒸気タービンと複合サイクル発電システムを習得する
- 5. 核分裂反応と原子力発電システムを理解する
- 6. MHD発電, 燃料電池, 太陽電池, 核融合発電について学ぶ7. 最近のトピックス(プルサーマル, 分散型電源,自然エネルギーの導入など)を理解する8. 水力, 火力, 原子力発電所のシステムと運用などを理解する(見学を含む)

【授業キーワード】

エネルギー資源,環境,水力発電,火力発電,原子力発電,燃料電池,高効率発電,複合発電システム,送 配電,自然エネルギー,エネルギー変換

【授業内容及び授業方法】

エネルギー問題, エネルギー資源の現状およびその量と利用可能性の評価について学び, 種々の発電方 式, 水力発電, 火力発電, 原子力発電方式についてその基本原理や特徴, 将来の方向について学習する. さらに将来技術であるMHD発電、光発電、燃料電池、核融合発電方式を学び、最後にエネルギーの貯蔵と電力輸送およびエネルギーの有効利用について考える。これらを修得した後に、水力、火力、原子力発電所、変電所、給電指令所など可能な現地見学を行う。講義では、教科書を中心に必要に応じてプロジェクタ やe-Bookなどを用いて解説を行う.

【授業項目】

- 1-2週, エネルギー資源とその利用
- 3-4週, 従来の発電方式(水力発電, 火力発電, 原子力発電, 地熱発電)
- 5-6週, 新しい発電方式(MHD発電, 熱電発電, 太陽電池, 燃料電池など)
- 7-8週,新しい発電システム(複合発電システム,核融合発電システム) 9-10週,エネルギー貯蔵と電力輸送
- 11-12週,電気エネルギーの有効利用
- 13-15週,発変電施設の見学,試験等(見学先の都合によって時期の変更あり)

【教科書】

「電気エネルギー工学」赤崎正則, 原 雅則著, 朝倉書店

【参考書】

参考書は特に指定しない

【成績の評価方法と評価項目】

講義中に何回か行う課題レポート、期末レポート、または講義内容から基礎的な理解度を問う試験を行い、 総合的に評価する. (課題レポート40%, 期末レポート10%, 試験50%)

電電気主任技術者第1種試験免除を希望する人は受講することが望ましい. なお, 講義時間のうち3回程度 は、現地見学に当てる予定である. 必要に応じて、キーワードの理解を深めるための小レポートを課す.

【参照ホームページアドレス】

http://nob.nagaokaut.ac.jp/lectures.html

電気法規及び電気施設管理

講義 2単位 1学期

Electrical Regulations and Management of Electrical Facilities

【担当教員】

小柴 正明

【教員室または連絡先】

非常勤講師

住所:東北電力株式会社 長岡技術センター 〒940-0856 長岡市美沢4丁目79-9

電話:0258-55-6202 E-mail:w790307@tohoku-epco.co.jp 本学世話教員:原田信弘,電気1号棟403教員室(内線9511, nob@nagaokaut.ac.jp)

【授業目的及び達成目標】

【授業目的】

電気事業法など電気に関する主要法規について,立法の背景,内容について学習する。また,電気事業 こおける系統計画ならびに電気工作物の工事・維持・運用に関する技術について学習する。

(C) 電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分野 の技術者として要求される、発展的な専門知識を修得している

- 1. 電気に関する主要法規の体系と立法の背景を理解する
- 2. 電気事業法および関連法令の概要とその運用について学ぶ
- 3. 電気事業の歴史と現状の課題について学ぶ
- 4. 電力設備の概要を理解し、電力系統計画について学ぶ 5. 電気工作物の維持・管理・運用について学ぶ

【授業キーワード】

電気事業法, 法体系, 電気保安, 電力の安定供給, 電気事業, 電力系統計画, 発電設備, 電力流通設備

【授業内容及び授業方法】

電気に関する主要法規の法体系ならびにその必要性を学習する. 電気保安ならびに公益事業としての観点から電気事業法および関連法令について学習する. 我が国の電気事業の現状と課題について認識し, 次に電力設備の概要ならびに電力の系統計画の考え方について学習する. さらに, 電気工作物の工事・維持 ・運用に関する技術について学習する. 講義形式で行い, 必要に応じて数回の発変電所, 給電指令所など の現地見学を行う.

【授業項目】

- 1. オリエンテーションと講義の概要
- 2. 電気事業の歴史
- 3. エネルギー情勢(世界のエネルギー事情, 日本のエネルギー事情, 地球環境問題)
- 4. 電力需給の現状と課題
- 5. 電力施設の概要(発電設備, 流通設備, 電力系統)
- 6. 電気関係の主要法規(電気関係法規の体系, 電気事業法, 電気工事士法等) 7. 電気事故と立入検査(最近の電気事故概要, 立入検査事例)
- 8. 発電設備等の見学(水力,火力,原子力発電所)

【教科書】

教科書はない. 必要に応じてプリント(パワーポイントのコピー)を使用.

【参考書】

参考書は特に指定しない.

【成績の評価方法と評価項目】

通常の講義内容に関連した課題レポートで評価する. なお, 講義, 見学とも毎回出席をとり, 欠席状況は減 点の対象とする.

【留意事項】

本講は,第1種電気主任技術者免状を実務経験(5万ボルト以上の電気工作物5年以上)で取得するときに

必要な教科である.
必要に応じて、キーワードの理解を深めるための小レポートを課す。 必要に応じて、キーワードの理解を深めるために小レポートを課す。

【参照ホームページアドレス】

http://nob.nagaokaut.ac.jp/lectures.html

Device Engineering 1

【担当教員】

安井 寛治

【教員室または連絡先】

電気1号棟 302室 内線:9502 E-mail:kyasui@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

電子機器の中で能動デバイスとして中心的な役割を果たしている半導体デバイスの構造と機能、そして動作 メカニズムについて学ぶ。まず、半導体の特性を決めているバンド構造と電気伝導の機構について理解する 。次に各種半導体デバイスの種類と機能を理解する。続いて半導体デバイスの基本であるpn接合について 理解するとともに、pn接合構造を有するpn接合ダイオード、バイポーラトランジスタの機能と特性を理解する 。さらにユニポーラデバイスであるMOSトランジスタとその基本構造であるMOSダイオードの構造と機能につ いて理解する。本科目の学習・教育目標、具体的な達成目標は次の通りである。

教育目標

(C) 電気電子情報工学分野の技術者として必要な専門知識を習得している。

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分野の技術者として要求される発展的な専門知識を習得している。

- 1. pn接合のバンド構造について説明ができる。 2. pn接合ダイオードの電流・電圧特性ならびに容量・電圧特性について説明が出来る。
- 3. バイポーラトランジスタのトランジスタ動作、増幅特性について説明ができる。 4. MOSダイオードの構造について説明ができる。
- 5. MOSトランジスタの構造や動作特性について説明ができる。

【授業キーワード】

半導体デバイス、pn接合ダイオード、バイポーラトランジスタ、電界効果トランジスタ、MOSダイオード、MOSト ランジスタ

【授業内容及び授業方法】

本講義では、代表的な半導体デバイスの構造と機能、そして動作メカニズムについて説明する。まず、デバイスの構造と機能を理解するうえで必要な半導体のバンド構造とキャリア輸送について簡単に説明した後、 半導体デバイスの種類と機能について概説する。次に半導体デバイスの基本構造であるpn接合について説明するとともに、pn接合構造を有するpn接合ダイオード、バイポーラトランジスタの機能と特性について説明 する。さらにMOSダイオードやMOSトランジスタ等、金属・絶縁体・半導体の構造を持つデバイスの特性と機 能について説明する。講義は、指定した教科書と適宜配付するプリントに沿って行う。また練習問題のプリントを配付し、指定した問題についてレポートとして提出してもらう。

【授業項目】

第1週~第2週:半導体のバンド構造と半導体中のキャリア輸送

第3週~第4週:半導体デバイスの種類と機能

第5週~第7週:pn接合構造、pn接合ダイオードの機能と特性

第8週:中間テスト

第9週~第10週:バイポーラトランジスタの構造と機能、動作特性

第11週~第12週:MOSダイオードの構造

第13週~第14週:MOSトランジスタの構造と動作特性

第15週:期末テスト

【教科書】

「基礎半導体工学」小林・金子・加藤 共著、コロナ社

【参考書】

「半導体デバイス」S. M. Sze著、南日・川辺・長谷川 共訳、産業図書

【成績の評価方法と評価項目】

中間テスト(50%)、期末テスト(50%)としてその合計で評価する。その結果が、60点に満たない者には別途試験 を行うことがある。

【留意事項】

1年入学者は、「電子・光波工学基礎I」、「電子・光波工学基礎II」を受講していることが望ましい。 本講義は、「デバイス工学II」、および「デバイス工学III」に続く。

【その他】授業時間だけではこの授業の内容を理解し、理解を定着させることは出来ません。教科書の各章が終了する毎にその章の理解に役立つ演習問題のプリントを配りますので、授業の復習を行なうと共に問題を解いて下さい。

Device Engineering 2

【担当教員】

内富 直隆

【教員室または連絡先】

内富直隆:電気1号棟305室(内線9505、e-mail:uchitomi@nagaokaut.ac.jp)

【授業目的及び達成目標】

本講義は、デバイス工学Iおよび4年生1学期のデバイス工学IIIと相互に関連づけられている。また、3年生2 学期の学生実験テーマの一つである「半導体光素子」と関連して実験内容をより深く理解するために役立たせる。本講義の内容は、半導体の物性に重心を置き、半導体の構造、半導体の電気伝導、固体のバンド理論、半導体の光学特性について講義する。本講義における具体的な教育目標および達成目標は次の点で ある。

【学習·教育目標】

(C) 電気電子情報工学分野の技術者として必要な専門知識を習得している。

(C-1)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分野 の技術者として要求される、発展的な専門知識を習得している。

【達成目標】

- (1)半導体の構造ついて定性的な議論ができる。
- (2)半導体の電気特性とその伝導特性について議論ができる。
- (3) 半導体を含む固体のバンド理論について説明ができる。
- (4)半導体の光学特性について説明ができる。
- (5) 半導体の格子振動について説明できる。

【授業キーワード】

結晶系、空間格子、結晶構造、格子欠陥、格子振動、伝導電子の散乱、井戸型ポテンシャル、自由電子モ デル、状態密度、トンネル効果、クローニッヒ・ペニーモデル、周期ポテンシャル、逆格子とブリルアン領域、 半導体のバンド構造、真性半導体、伝導率と移動度、ドリフト電流と拡散電流、キャリアの再結合過程、光の 吸収と反射、吸収係数、半導体の発光過程、熱電効果

【授業内容及び授業方法】

本講義では、電子デバイスおよび光デバイスへ応用される半導体材料を中心に、その半導体物性について 講義する。まず、半導体材料の物質構造について説明を行い、結晶構造や格子欠陥について理解する。また、格子振動について説明し、電気伝導の基礎を理解する。次に、固体のバンド理論についてまず定性的 に理解し、引き続き井戸型ポテンシャルに閉じ込められた電子の運動について理解する。さらに、半導体の 電気物性、光物性の基礎を学習し、半導体デバイスへの応用を理解する。

【授業項目】

第1週~第3週 半導体物性に必要な量子力学の基礎

第4週 物質の構造

第5週 格子振動

第6週~第7週 固体のバンド理論(1)

第8週 中間試験 第9週 固体のバンド理論(2)

第10週~第11週 半導体の電気物性、

第12週 電気伝導機構の基礎

第13週~第14週 半導体の光物性、光学特性

第15週 期末試験

【教科書】

特に指定しない。

【参考書】

半導体の物性に関する教科書は多数出版されているが、たとえば小長井誠著「半導体物性」(培風館)、御 子柴宣夫著「半導体の物理」(培風館)等がある。

【成績の評価方法と評価項目】

中間試験(50%)、期末試験(50%)としてその合計で評価する。 合格点(60%)に満たない者に対しては、追加試験あるいはレポートを課すことがある。

【留意事項】

デバイス工学1」を習得しているか同等の知識を持っていること。この講義内容は「デバイス工学III」に継続す 授業時間だけでは、この講義の内容を理解し、その理解を定着させることはできません。授業の復習を必 ずするようにしてください。

電子物性工学Ⅱ 講義 2単位

Electric and Electronic Materials 2

【担当教員】

高田 雅介·加藤 有行

【教員室または連絡先】

高田: 電気1号棟401室, 内線9509, E-mail: takata@vos.nagaokaut.ac.jp 加藤: 電気1号棟303室, 内線9503, E-mail: arikato@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

(授業目的)

材料,物性について必ずしも深く学んでこなかった学生諸君,並びに既にある程度学んだ諸君を対象として,この分野で物理学の基本から固体の記述方法までの導入をはじめに行う。そして物質の電磁場に対する 応答の実際として、電気材料の分野の中の金属、磁性材料、誘電材料を例として物性論まで踏み込みなが らそれら電気材料の基本的及び実用的性質を習得する.

2学期

(学習・教育目標)

(C) 電気電子情報工学分野の技術者として必要な専門知識を修得している.

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者として要求される、発展的な専門知識を修得している.

(達成目標)

基礎的な量子力学の言葉を用いて固体(格子と電子)を記述し,物性と関連して説明できること.磁性体, 誘電体の基礎物理をもとに、材料として用いる場合の開発・改良すべき特徴について理解し、説明できるこ . より具体的には,

- (1) 原子が集合して凝集体となることをポテンシャルの重ね合わせとして理解する. (2) 金属、半導体、絶縁体を電子の分散関係と結び付けて理解する. (3) 磁性体において考慮すべきエネルギーを理解する.

- (4) 強磁性体の応用に関して調査し、技術的課題とその解決法について学ぶこと.
- (5) 誘電性と導電性の違いを理解する.
- (6) 強誘電体の応用に関して調査し、技術的課題とその解決法について学ぶこと.

【授業キーワード】

物性論, 量子力学, 金属, 磁性材料, 誘電材料, 加えて授業項目に記載の項目

【授業内容及び授業方法】

前半(第1週~第5週)は、誘電材料の電磁気的特性について述べ、更に実用材料とその応用に現状に言 及する.後半(第6週~第15週)は、始めに導電(抵抗)材料を理解するために凝集体、金属の自由電子の概念とその記述法について述べる.更に、磁性の起源と磁性材料の電磁気的特性について述べ、実用材料と その応用に現状に言及する

本講義では式の本質を可能な限り図表等で表現する. なぜならば現象に対するはっきりとしたイメージがあ ってはじめてその式での記述の意味を捉えることができると思うからである.

前半は高田が、後半は加藤が担当する.必要に応じてプリントを配布し、板書、プロジェクタ等により講義を行う.毎回、講義終了後に各自が講義で理解したこと、疑問に思ったことを記述してもらい、それを回収し、疑問点に関しては次回の講義にて可能な限りフィードバックを行う.

- 1. 誘電性と導電性(第1週)
- 2. 誘電材料の基礎(第2週)
 - (常誘電体, 焦電体と強誘電体, ヒシテリシス曲線)
- 3. セラミック圧電体(第3週)
- 4. 物質の電気光学および音響光学効果(第4週)
- 5. 実用セラミックス材料(第5週)
- 6. 原子の凝集体としての結晶(金属)の捉え方(第6週~第7週)

(量子力学の導入,原子軌道,化学結合)

- 7. 金属内の電子と電気伝導(第8週~第9週) (電子のエネルギー準位, 状態密度, フェルミエネルギー, フェルミ分布関数, 緩和時間) 8. 結晶格子とバンド構造(第10週~第11週)
- - (逆格子,ブロッホの定理,準自由電子近似,強束縛近似,バンドギャップ)
- 9. 磁性の起源(第12週)
- (磁気双極子モーメント, スピン, 交換相互作用, フント則) 10. 磁性材料の基礎(第13週~第14週)
- (分子場近似,キュリー温度,磁気異方性,磁区,ヒシテリシス曲線,ソフトとハード材料)
- 11. 磁気情報ストレージ(第15週) (歴史,磁気記録,光磁気記録)

【教科書】

特に指定しない. 必要に応じてプリントを配布する.

【参考書】

- 「固体物理学入門」C.キッテル著(丸善)
- 「物性物理」家泰弘著(産業図書)
- 「固体電子論の基礎」小泉義晴・高橋宣明著(東海大学出版会)

「固体物性論の基礎」小泉義晴・高橋宣明著(東海大学出版会)

「磁性入門」志賀正幸著 (内田老鶴圃)「セラミック誘電体工学」岡崎清著 (学献社)

【成績の評価方法と評価項目】

前半(第1週~第5週)は、強誘電体とその応用に関するレポート、ならびに数回の講義の進度に応じたレポートを小計40点とし、後半(第6週~第15週)は強磁性体とその応用に関するレポート、ならびに数回の講義の進度に応じたレポートを小計60点として総合100点で評価する.

講義中のコメント・質問は歓迎する. この学習は「電子物性工学」」を引継ぎ、さらに「電子物性工学III」に発 展深化する.

(授業時間外学習を促す取り組み)

本講義で学習する内容は非常に広範にわたっており、授業時間だけでは講義の内容を理解し、その理解を定着させることはできない、そのため、授業進度に呼応した数回のレポートを課すことにより理解の定着を 図る.

【参照ホームページアドレス】

http://hikari.nagaokaut.ac.jp/

光波工学I 講義 2単位 2学期

Optical Wave Engineering 1

【担当教員】

上林 利生

【教員室または連絡先】

上林利生:電気1号棟605教員室(内線9531、e-mail:toshikam@vos.nagaokaut.ac.jp)

【授業目的及び達成目標】

授業目的

現在の情報社会を支える光通信や光情報処理といった光の工学的な応用に必要不可欠な、光導波路の基 礎を習得することを目的とする。ここでは光を波(電磁波)としてとらえ波動工学的手法を身につける。 学習•教育目標

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者として要求される、発展的な専門知識を修得している 達成目標

(1)マクスウェルの方程式を理解して、4つの基本法則からその式を導出できる。

- (2)異なる媒質の境界面における平面波の反射透過を適切に取り扱うことができ、反射係数、透過係数が導
- (3)三層スラブ誘電体導波路の界分布と、モードの特性方程式が導出できる
- (4)光ファイバ中の光波の伝播を理解しており、材料分散によるパルス広がりを導出できる。

【授業キーワード】

マクスウェルの方程式、波動方程式、偏光、平面波、球面波、複素屈折率、境界条件、反射・屈折・吸収、導 波路、光ファイバ中の伝播

【授業内容及び授業方法】

授業内容

まず波の基本的な物理量として波長、振幅、周期、位相があること、波の速さやそれが従う波動方程式を学ぶ。さらに干渉や波の運ぶパワーなども学ぶ。ついで電界・磁界についてもそれらが記述されるマクスウェルの方程式から波動方程式が導かれることを学び、これらは波であることを認識する。光は波としての性質から異なる媒質の境界面で反射、透過、屈折すること、及びその法則を学ぶ。この性質の一つである全反射を巧く利用すると極低損失で光を導波することができ、それらは三層誘電体導波路や光ファイバとして実現され ていること、このような導波路中の電界・磁界はどのように表されるか、それによって実現される特性などを学 ぶ。 授業方法

指定した教科書に沿って講義を行う。 必要に応じて宿題を出す。また、数回、コンピュータを用いたシミュレ ーション動画を使って解説する。

【授業項目】

授業項目

第1週~第2週 波の基本的な性質、マクスウェルの方程式、境界条件

第3週~第4週 波動方程式、平面波・球面波、偏光、電磁波の運ぶ電力、群速度・位相速度 第5週~第6週 平面波の反射、透過、屈折

第7週 中間試験

第8週~第9週 三層スラブ誘電体導波路、TE波、TM波、モード

第10週~第11週 モードの運ぶ電力、遮断、グースヘンシェンシフト

第12週~第13週 光ファイバ、LPモード、伝送損失、伝送帯域、光ファイバ応用

第14週 期末試験

第15週 試験の講評と全体のまとめ

【教科書】

「光エレクトロニクス」 上林・貴堂 森北出版

【成績の評価方法と評価項目】

中間試験50%、期末試験50%で成績を評価する。成績が60%未満の者に対して別途試験をすることがあ る。

【留意事項】

受講者は「上級電気磁気学」を習得していることが望ましい。特にベクトル、複素数の知識は不可欠である。 授業時間以外の学習(準備学習等)について

授業時間だけでは、この講義の内容を理解し、その理解を定着させることはできません。授業の復習は必ず して、基礎的な部分を理解してください。特に授業中に強調した部分や、教科書に載っていないことを説明した部分などを中心に復習し、ノートに纏めることを勧めます。わからないところが出てきた場合はそのままにせず、次回の授業の時か、オフィスアワーに質問しに来てください。それも不可能なときはメールで質問してもかまいません。納得がいかないときはインターネットを使う等して知識を補充してください。

Electric and Electronic Materials 3

【担当教員】

加藤 有行・北谷 英嗣

【教員室または連絡先】

加藤: 電気1号棟303室, 内線9503, E-mail: arikato@vos.nagaokaut.ac.jp 北谷: 電気1号棟304室, 内線9504, E-mail: kitatani@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

(授業目的)

「電子物性工学」」および「電子物性工学!!」で学習した量子力学的・統計力学的描像をより深く理解すること

(学習・教育目標)

(C) 電気電子情報工学分野の技術者として必要な専門知識を修得している.

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者として要求される、発展的な専門知識を修得している.

(達成目標)

- (1) 量子力学の原理, 枠組を理解する.
- (2) 簡単なポテンシャル問題が解けること.
- (3) 統計力学の原理を理解する.
- (4) カノニカル分布を簡単な系に適用できること.

【授業キーワード】

ハミルトニアン,シュレーディンガー方程式,不確定性原理,摂動論, カノニカル分布、自由エネルギー、フェルミ統計とボーズ統計、加えて授業項目に記載の項目

【授業内容及び授業方法】

「電子物性工学I」および「電子物性工学II」で学んだ量子力学的描像・統計力学的描像を深化させて,体 系的に解説する.前半(第1週~第7週)では,量子力学の基本的枠組を解説した後,具体的なポテンシャル 問題や摂動論への適用法を解説する.後半(第8週~第14週)では,統計力学の原理を解説した後,フェル ミ粒子系への適用法や相転移現象について解説する.

前半の量子力学は加藤が、後半の統計力学は北谷が担当する. プリントを配布し、板書、プロジェクタ等に より講義を行う. 必要に応じてレポート等の宿題を出し. 最終週(第15週)に期末試験を行う.

【授業項目】

- 第1週 観測問題と演算子, 固有値と固有関数
- 第2週 交換関係, 同時観測性と不確定性原理 第3週 シュレーディンガー方程式
- 第4週 ポテンシャル問題とその解法
- 第5週 行列表現形式とユニタリー変換
- 第6週 近似解法と摂動論
- 第7週 角運動量とスピン
- 第8週 統計力学の原理 第9週 カノニカル分布
- 第10週 分配関数と自由エネルギー 第11週 フェルミ統計とボーズ統計
- 第12週 熱力学と統計力学
- 第13週 理想気体
- 第14週 相転移とボーズ凝縮
- 第15週 期末試験

【教科書】

特に指定しない. 必要に応じてプリントを配布する.

【参考書】

「量子力学」シッフ著(吉岡書店)

「現代の量子力学」J. J. サクライ著 (吉岡書店) 「統計物理学」 ランダウ・リフシッツ著 (岩波書店)

【成績の評価方法と評価項目】

レポートを40%, 期末試験(第15週)を60%として総合100%で評価する.

【留意事項】

講義中のコメント・質問は歓迎する. 「電子物性工学」」に引き続き, 「電子物性工学II」を履修していることが 望ましい.

(授業時間外学習を促す取り組み)

本講義で学習する内容は非常に広範にわたっており、授業時間だけでは講義の内容を理解し、その理解を 定着させることはできない、そのため、授業進度に呼応したレポートを課すことにより理解の定着を図る。

【参照ホームページアドレス】

http://hikari.nagaokaut.ac.jp/

光波工学II 講義 2単位 1学期

Optical Wave Engineering 2

【担当教員】

小野 浩司

【教員室または連絡先】

小野浩司:電気1号棟602教員室(内線9528、e-mail:onoh@vos.nagaokaut.ac.jp)

【授業目的及び達成目標】

本講義では、光波に関する諸現象の内、波動のコヒーレンスと干渉現象、ベクトル波の概念と光学的異方性 について講義する。

[学習·教育目標]

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者を目指すべく,各分野におけるさらに発展的な専門知識を修得している 「達成目標]

(1)光波のコヒーレント性と干渉の関係について定性的な説明ができる。

(2)2光波干渉について、干渉の式を用いて説明ができる。

(3)種々の干渉計あるいは薄膜の干渉について数式を用いて説明ができる。

- (4) 平面波、球面波、ガウシアンビームの概念、さらにベクトル波の基礎を習得し、偏光の概念及び境界条 件について説明できる。 (5)回折現象とフーリエ光学の関係を説明でき、簡単な回折格子の計算が行える。
- (6) 光線行列法によるレンズ機能の計算が行える。

【授業キーワード】

エタロン板、ファブリーーペロー干渉素子、回折格子、分光器の原理、フレネル回折、フラウンホーファー回折 、ホログラフィー、フーリエ光学、種々の干渉計、干渉計測、光のコヒーレンス、光学薄膜、

【授業内容及び授業方法】

本講義では、光波の干渉・回折の諸現象、ベクトル波の概念と干渉を中心に講義する。まず、波動のコヒー レント性の概念について説明を行い、波動の中での光波の位置付けとその干渉、回折現象、フーリエ光学の基礎、回折格子とその分光への応用について理解する。また、ベクトル波としての光波について学び、偏光の概念を導入した後、誘電体界面での境界条件について理解するとともに、これを薄膜の干渉現象へと発展させる。授業は、スライドと板書を併用して行い、スライドを資料として配布する。また、講義時間中に適宜 演習を行う。

【授業項目】

第1週 波動現象の数学的記述(基本概念)

第2週~第3週 波動のコヒーレント性と干渉の基礎 第4週 種々の干渉計、干渉計測の基礎 第5週 ベクトル波の概念

第6週~第7週 境界条件と反射、多重干渉とファブリペロ干渉素子、フィネス

第8週 中間試験

第9週~第10週 波動の伝播、ベクトル波、ガウシアンビーム伝播の基礎

異方性媒体中のベクトル波伝播の解析、ジョーンズ法 第11週

第12週 光線行列法

第13週~第14週 フラウンホファー回折と回折格子、分光、ホログラフィの基礎

第15週 期末試験

【教科書】

特に指定しない。

【参考書】

多数出版されている光学・電磁波に関する教科書のうち、自分にあうと思われるものを一冊購入することを強 く勧める。例えば、鶴田匡夫著「応用光学III」(培風館)等がある。

【成績の評価方法と評価項目】

中間試験(40%)、期末試験(40%)、演習(20%)としてその合計で評価する。

【留意事項】

「上級電気磁気学」もしくは「光波工学」」を習得しているか、同等以上の知識を有していること。 【授業時間外の学習】

授業時間だけでは、 この講義の内容を理解し、その理解を定着させることは容易ではありません。授業の要 所要所で演習等を執り行いますので、その勉強を中心に復習を必ずするようにしてください。

光物性工学 講義 2単位 1学期

Optical properties of materials

【担当教員】

打木 久雄

【教員室または連絡先】

打木久雄: 電気1号棟601教員室(内線9527、e-mail: uchiki@vos)

【授業目的及び達成目標】

授業目的

半導体や誘電体について、発光や光吸収、ラマン散乱などの基礎的光学現象の機構を古典的および量子力学的に理解し、これらの基礎的理解をもとにレーザーや非線形光学、電気光学・磁気光学効果、音響光 学などへの応用を学ぶ。

学習•教育目標

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの 分野の技術者として要求される、発展的な専門知識を修得している

達成目標

- (1)膜の複素屈折率から基板上に堆積した薄膜の透過・反射スペクトルを求められる。
- (2)半導体の種々の発光・吸収機構、ラマン散乱の機構を理解する。(3)発光ダイオードやレーザー発振の基本原理を理解する。
- (4) 非線形光学効果の基本原理を理解する。
- (5) 電気光学・磁気光学効果の基本原理を理解する。

【授業キーワード】

電子と光の相互作用、直接遷移と間接遷移、半導体による光吸収、半導体の発光現象、コヒーレント光の発生、レーザーの原理、ラマン散乱、非線形光学、(強)誘電体の光学特性(光学的異方性含む)、誘電体の屈折率分散(KK変換)、発光ダイオード、半導体レーザー、電気光学・磁気光学効果、音響光学

【授業内容及び授業方法】

授業内容

まず、基板上薄膜の透過率や反射率などの光学計算法を学ぶ。ついで、電子と光の相互作用について古典的および量子力学的取り扱い法(摂動法)を学ぶ。これをもとに、具体的な対象として半導体や誘電体の種々の光学現象を取り扱う。実際の光学への応用を念頭に入れ、理論式だけでなく具体的に数値を求めて、 量的な把握に努める。

配布プリントに沿って講義を行う。必要に応じて光学スペクトルなどの数値計算プログラム作成の宿題を出す

【授業項目】

第1週 吸収係数と屈折率、誘電率の分散

第2週 物質の境界における反射と屈折、単層平行平面板の透過率と反射率、基板上に薄膜のある試料の 透過率と反射率

第3週 行列を用いた多層膜の光学計算、半導体の電子状態

第4週 電子と光の相互作用

第5週 直接遷移と間接遷移による光吸収

第6週 その他の光吸収過程

第7週 不純物による吸収、自由キャリアによる吸収、ルミネッセンス、Roosbroeck-Shockley関係、放射量子 効率、直接ギャップ材料、間接ギャップ材料、フォトルミネッセンス、古典統計

第8週 中間試験 第9週 縮退、蛍光分光、基礎遷移、励起子発光 第10週 伝導帯ー価電子帯遷移、バンドー不純物遷移、ドナーーアクセプター遷移

第11週 赤外活性フォノン、極性結晶における赤外反射と吸収、リデン・ザックス・テラーの関係式、Reststrahlen、非弾性光散乱、ラマン散乱

第12週 エレクトロルミネッセンス、格子整合、接合エレクトロルミネッセンス、ダイオードレーザー、有機LED

第13週 非線形光学、電気光学効果 第14週 磁気光学効果、音響光学

第15週 期末試験

【教科書】

特に指定しない。

【参考書】

Optical Properties of Solids、Mark Fox著、Oxford University Press. 光物性基礎、工藤恵栄著、オーム社

【成績の評価方法と評価項目】

宿題10%、中間試験45%、期末試験45%で成績を評価する。

【留意事項】

受講者は「電子物性工学I」に引き続き、「電子物性工学II」を習得していることが望ましい。

【その他】

授業時間だけでは、この講義の内容を理解し、その理解を定着させることはできません。授業の復習は必ずするようにしてください。

【参照ホームページアドレス】

http://femto.nagaokaut.ac.jp/InUniv/hikari.htm

Device Engineering 3

【担当教員】

河合 晃

【教員室または連絡先】

電気1号棟404室(内線9512、E-mail kawai@vos.nagaokaut.ac.jp)

【授業目的及び達成目標】

【授業目的】

材料科学において、物質の物理的・化学的性質の大部分が、その電子の振る舞いによって記述される。多種多様な物質およびデバイスにおける電子の振る舞いと役割について学ぶとともに、機能性デバイスの基礎特性を理解する。また、MOSデバイス、発光デバイス、量子効果デバイス等の先端電子デバイスの動作原 理について理解する。本講義における具体的な教育目標および達成目標は次の点である。

【教育目標】

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者を目指すべく、各分野におけるさらに発展的な専門知識を修得している

【達成目標】

- 1. 固体の基礎物性における電子の役割を理解する。
- 2. 各機能性デバイスの構造および動作原理を理解する。 3. 抵抗標準および電圧標準素子の原理を学ぶとともに、科学技術におけるエレクトロニクスの重要性を学ぶ

【授業キーワード】

MOSデバイス、誘電体、センサー、半導体集積回路、超伝導デバイス、量子効果デバイス、発光デバイス、 液晶デバイス

【授業内容及び授業方法】

半導体、誘電体、金属などの固体材料の諸特性における電子の振る舞いと役割について述べる。様々な電 子デバイスの中で機能性材料の役割について述べた後、これらデバイスの動作原理、および基礎特性について述べる。先端の半導体集積回路、次世代デバイスについて述べる。授業としては、固体物性の基礎分 野、および、応用デバイスの分野について適宜プリントを使用する。

【授業項目】

- 第1週 半導体MOSデバイスの基礎
- 第2週 半導体集積回路(LSI)デバイス(DRAM、SRAM、EPROM,EEPROM、flash-EPROM)
- 第3週 半導体集積回路(LSI)の評価技術(C-V特性、TDDB) 第4週 MOS型センサー(圧電センサー、カラーイメージセンサー、湿度センサー、PHセンサー)
- 第5週 ディスクデバイス(CD, CD-R、CD-RW、DVD、DVD-R、DVD-ROM)
- 第6週 誘電体センサー(圧電素子、赤外線センサー、PTCサーミスタ) 第7週 表示デバイス(液晶ディスプレイ、プラズマディスプレイ、SED、FED)
- 第8週 中間試験
- 第9週 材料の光学特性の基礎(光吸収、光学定数、反射・屈折・透過、誘電関数)
- 第10週 光学デバイス(レーザ、LED、太陽電池) 第11週 量子効果の基礎(コンダクタンスの量子化、クーロンブロッケード、超伝導性)
- 第12週 量子効果デバイス(抵抗標準素子、電圧標準素子、フラーレン、カーボンナノチューブ) 第13週 微小電子機械素子(MEMS)(マイクロタグ、加速度センサ、ジャイロセンサ)
- 第14週 デバイス評価技術(信頼性評価、寿命予測)
- 第15週 期末試験

【教科書】

特に指定しない

【参考書】

電子物性工学 青木昌治 著(コロナ社) 電子物性 松澤剛雄 他著 (森北出版)

【成績の評価方法と評価項目】

上記達成目標1~3について評価する。

中間試験(50%)、期末試験(50%)として、その合計で評価する。 本講義で学習する内容はデバイス工学の基本であるが、広範囲にわたっており、授業時間だけでは講義の 内容を理解し、その理解を定着させることはできない、そのため、講義に合わせた予習復習が必要である。

【参照ホームページアドレス】

http://kawai.nagaokaut.ac.jp デバイスプロセス・ナノ計測制御研究室 電波工学 講義 2単位 1学期

Antenna and Propagation of Radio Waves

【担当教員】

上林 利生

【教員室または連絡先】

上林利生:電気1号棟605教員室、内線9531、E-mail:toshikam@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

授業目的

通信・放送・航行支援・レーダ等で情報の担い手として利用されている電波(3000GHzまでの電磁波)に 基本原理・本質的な考え方に重点を置いて学ぶ。

学習•教育目標

(C) 電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの 分野の技術者として要求される、発展的な専門知識を修得している 達成目標

- (1)マクスウェルの方程式から波動方程式を導出できる。
- (2)等価定理と磁流を理解して、説明できる。 (3)アンテナの基本となるダイポールアンテナからの電磁波の放射特性について理解し、説明できる。
- (4)各種アンテナについて理解し、説明できる。

【授業キーワード】

導波管、放射、多重極子、伝播、検出(電波アンテナ)、マクスウェルの方程式、スカラー・ポテンシャル、ベクトル・ポテンシャル、遅延ポテンシャル、ヘルツベクトル、TEM波線路、スミスチャート、方形導波管、円形導 波管、ストリップ線路、ダイポールアンテナ、開口面アンテナ、アレイアンテナ、電磁波の散乱

【授業内容及び授業方法】

授業内容

最初に電磁気学で既に学んだ電磁波の基礎的事項を復習した後、電波工学に特有の概念として等価定 理・磁流(電流に双対な電磁波源)について学習する。また、マイクロ波回路について電磁界論と回路論の両面から学ぶ。後半は電波の送受信用デバイスであるアンテナの基礎原理を学ぶ。

指定した教科書に沿って講義を行う。 必要に応じて資料を配付し、宿題を出す。

【授業項目】

授業項目

第1週~第2週 基礎電磁方程式と波動方程式、平面波 第3週~第4週 電磁波源と電磁界、スカラーポテンシャルとベクトルポテンシャル 第5週~第6週 高周波用伝送線路(スミスチャート、方形導波管、円形導波管)

第7週 中間試験

第8週~第10週 素電磁流からの放射、開口面からの放射

第11週~第12週 アンテナの諸特性とアンテナの配列

第13週 電磁波の散乱と回折

第14週 期末試験

第15週 試験の講評と全体のまとめ

【教科書】

「電磁波工学」 稲垣 丸善株式会社

【成績の評価方法と評価項目】

中間試験50%、期末試験50%で成績を評価する。成績が60%未満の者に対して別途試験をすることがあ る。

【留意事項】

受講者は電磁気学とベクトル解析をひととおり学んだものと想定する。

電波工学の応用面ならびに電波伝搬については「無線システム」を受講されるとよい。

授業時間以外の学習(準備学習等)について

授業時間だけでは、この講義の内容を理解し、その理解を定着させることはできません。授業の復習は必ずして、基礎的な部分を理解してください。日々発展している新しいアンテナの構造などは、インターネットを使う等して知識を補充してください(どの部分に授業で習った原理が活用されているか調べると、よりいっそう理 解が深まります)。

応用数学 講義 2単位 1学期

Applied Mathematics

【担当教員】

濱崎 勝義

【教員室または連絡先】

居室:電気1号棟3階301室、内線9501、E-mail:mchama@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

授業目的

線形・非線形の偏微分方程式について学ぶ。工学分野、特に電気系で扱う偏微分方程式群の相互の関連性について学習し、これら偏微分方程式の導出方法、及びその一般解法、数値解法について修得する。本 科目は教育目標の(I-1)に寄与する。

- 1. 多変数関数のTaylor展開と数値解法について理解し、応用できること。
- 2. 各種積分変換について理解し、応用できること。
- 3. 電気系で使われる各種偏微分方程式のモデリングについて習熟すること。

学習•教育目標

- (B)電気電子情報工学分野に共通した基礎的知識を修得している。
- (B-2)数学・物理学・化学・生物学等の自然科学に関する基礎知識を有し、電気電子情報工学分野に応 用できる。

【授業キーワード】

偏微分方程式, モデリング, 数値解法

【授業内容及び授業方法】

授業内容

最初に、基礎数学(多変数関数のTaylor展開、積分変換等)について復習する。続いて、種々の偏微分方 程式の導出方法、及びその解析法・数値解法について学習する。 授業方法

資料に基づいて講義を行い、必要に応じてレポート、小テストを課す。

【授業項目】

- 第1-2週 多変数関数のTaylor展開と数値解法
- 第3-4週 積分変換の基礎と応用
- 第5-6週 数学モデルの作り方(1)
- 第7-8週 数学モデルの作り方(2) -拡散方程式-第9-10週 数学モデルの作り方(3) -線形・非線形波動方程式-第11-13週 数学モデルの作り方(4) -確率微分方程式-
- 第14-15週 偏微分方程式の数値解法

【教科書】

なし

【参考書】

「応用偏微分方程式」河村(共立出版),「偏微分方程式の基礎と応用」矢吹(サイエンス社),「計算力学と CAEシリーズ3 差分法」高橋・棚町(培風館)など

【成績の評価方法と評価項目】

中間・期末試験(各50%)の合計で成績評価する(欠席は5点/回減点)。

【留意事項】

授業時間だけでは講義内容を十分に理解することは難しいので、講義で用いる自習書を良く読んで、必ず 予習・復習をすること。

本講義は、3学年1,2学期の必修科目、「電気電子情報数学及び演習I,II」に続いて、自然現象をモデリン グして各種偏微分方程式を導出する方法、及びその応用について講義するので、前記科目の講義内容に ついては十分習得していることを前提とする。

離散情報数学 講義 2単位 1学期

Discrete Information Mathematics

【担当教員】

中川 匡弘

【教員室または連絡先】

電気1号棟 609室 内線9535

【授業目的及び達成目標】

【授業目的】

情報科学に関係する離散数学の基礎、特に、基礎代数のための集合論と関係、写像、並びに、代数系と 群の間の相互関係と基本的性質を学習し、さらに、その応用として、形式言語と有限オートマトン、構文解析 の基礎について習得する.

【学習·教育目標】

- (C)電気電子情報工学分野の技術者として必要な専門知識を修得している
- (C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」の いずれかの分野の技術者を目指すべく、各分野におけるさらに発展的な専門知識を修得している

【達成目標】

- 1. 集合の表現・演算について習得する.

- 1. 集合の表現では、では何から。
 2. 関係・逆関係とそれらの表現及び合成について習得する。
 3. 同値関係、同値類の定義とその性質について習得する。
 4. 写像、逆写像とそれらの表現及び合成について習得する。
 5. 代数系の定義と商代数系について理解する。
 6. 形式言語の基礎となる、群、半群、モノイド等についてそれらの基本的性質を理解する。
 7. 形式言語の種類とそれらの性質について習得する。
 8. 句構造文法、文脈依存文法、文脈自由文法、正規文法の定義、並びに、その生成言語について習得する。
- 9. 正規文法とオートマトンの関係について理解する.
- 10. 文脈自由文法とプッシュダウンオートマトンの関係について理解する.
- 11. 文脈自由文法とチョムスキー標準形について習得する. 12. 文脈自由文法に対するCocke-Kasami-Youngerの構文解析手法を習得する.

【授業キーワード】

集合, 関係, 写像, 代数系, 群, 形式言語, 形式文法, 構文解析

【授業内容及び授業方法】

先ず,集合の基礎から関係,写像について講述し,代数系,群の基礎,さらに,その応用として,形式言語 とオートマトン,並びに,基本的な構文解析について講義する.

【授業項目】

- 1. 集合の表現・演算.
- 2. 関係・逆関係とそれらの表現及び合成.
- 3. 同値関係, 同値類の定義とその性質. 4. 写像, 逆写像とそれらの表現及び合成.
- 5. 代数系の定義と商代数系.
- 6. 形式言語の基礎となる, 群, 半群, モノイドとその性質.
- 7. 形式言語の種類とそれらの性質.
- 8. 句構造文法, 文脈依存文法, 文脈自由文法, 正規文法の定義, 並びに, その生成言語.
- 9. 正規文法とオートマトン.
- 10. 文脈自由文法とプッシュダウンオートマトン.
- 11. 文脈自由文法とチョムスキー標準形.
- 12. 文脈自由文法とCocke-Kasami-Youngerの構文解析手法

【教科書】

特になし.

【参考書】

特になし.

【成績の評価方法と評価項目】

レポート(50%), テスト(50%)の結果より、左記の割合で総合的に評価し、60点以上を合格とする。

【留意事項】

講義時間内の学習は困難な場合には、自宅学習が必要である.

Computer System

【担当教員】

山崎 克之

【教員室または連絡先】

居室:電気1号棟5階505室、内線9521

【授業目的及び達成目標】

授業目的:

情報通信システムの一つの核である電子計算機システムについて、その基本構造、細部にわたる動作、特 徴を理解し設計側からの視点で電子計算機システムへの理解を深める。

学習・教育目標:

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している。

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者として要求される、発展的な専門知識を修得している。

達成目標:

- ・計算機の基本構造(プログラムカウンタ、レジスタ、アキュムレータ、メモリ)を理解できること
- ・アセンブリ言語のプログラミングを理解できること。特に、計算機の基本構造と関連してその機能・動作を 理解できること
- ・構成要素(プログラムカウンタ、レジスタ、アキュムレータ、メモリ)間の接続と信号の流れを理解し、制御信 号を発生する回路やマイクロプログラムを理解できること
- ・基本的なインタフェース(RS-232C、SCSI)について、信号伝達の方式、動作の概要、特徴を理解できるこ
- ・メモリの種類と特徴、メモリシステムの構成、キャッシュなどの高速化手法の動作、特徴を理解できること。

【授業キーワード】

コンピュータの構成、演算と制御、マイクロプロセッサ、アセンブラ、メモリ、マイクロプログラム

【授業内容及び授業方法】

アセンブリ言語と機械語の対応から計算機内部でのプログラムの表現方法を学び、レジスタ、メモリなどの役 割と動作について理解した後、演算、データ転送、制御、インタフェースなど各回路の構成と動作原理を具 制と動作について理解した後、演算、アーク転送、前崎、インクラエーへなど行回路の構成と動作が理を具 体的に学ぶ。特にマイクロプログラム制御方式を中心にハードウェアを構成する技術について講義する。さら にハードウェア実現の基本となるメモリ、マイクロプロセッサなど集積回路について学ぶことによって、設計側 からの視点で電子計算機システムへの理解を深める。主要なハード部品に触れ、組立てパソコンによって構 成を具体的に学習するなどの実習を通して、実用的な電子計算機システムとの関連をつける。

【授業項目】

- 第1回 イントロダクション、PCの構成要素 第2回 COMETとアセンブリ言語(CASL)、COMETアーキテクチャ
- 第3回 COMETとアセンブリ言語(CASL)、COMET/ イケックト 第3回 COMETとアセンブリ言語(CASL)、アセンブラと機械語変換 第5回 Z80(実際のCPUとアセンブリ言語)
- 第6回 論理関数、論理関数の簡略化
- 第7回 中間試験
- 第8回 基本論理回路、演算回路、オーバフロー
- 第9回 バス、制御回路(命令のデコード)
- 第10回 シーケンス制御、マイクロプログラム方式、割込み
- 第11回 メモリ集積回路とメモリシステム、キャッシュ
- 第12回 入出力インタフェース、OSの役割
- 第13回 高速化手法(パイプライン)、CPUの変遷
- 第14回 電子計算機の歴史、組込みシステム
- 第15回 期末試験

【教科書】

事前にテキストを配布する。

【参考書】

「計算機構成論」 岩崎一彦ほか著 昭晃堂

「基本情報技術者標準教科書」 中根雅夫著 オーム社

【成績の評価方法と評価項目】

中間試験と期末試験の得点の平均により評価する。60点に満たなかった者には別途試験を行うことがある。 ただし、別途試験を受験できるのは、中間試験と期末試験の両試験を受験している者に限る。

【留意事項】

受講者はブール代数、ディジタル電子回路の基礎知識を持っていること。3年実験「マイクロコンピュータと組込みシステム」と関連し、4年情報関連科目に接続する。「情報処理技術者試験」と関連の深い内容を含んで おり、将来、当該試験の受験を希望するものは、受講することを推奨する。

授業時間だけでは、この講義の内容を理解し、その理解を定着させることはできません。 授業の中でその回の授業のポイントとなる簡単な演習問題を出すので、そのポイントを中心に復習をすること。また、関連する技術を調査・考察するレポートを課す場合がある。

ディジタル信号処理基礎

講義 2単位 2学期

Fundamental Digital Signal Processing

【担当教員】

島田 正治

【教員室または連絡先】

居室:電気1号棟5階502室、内線9518 Email: shimada@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

時間に依存する信号のディジタル化(標本化・離散値化)・離散フーリエ変換・Z変換などを連続系と関連さ せながら、離散値系の基礎となる概念を学習し、離散時間信号とシステムを取り扱う手法を修得する。

学習·教育目標:

- (D)電気・電子・情報工学分野に関する基礎知識を養成する。 (D-1)電気工学分野に関する基礎知識を理解できる。
- (D-3)情報通信工学分野に関する基礎知識を理解できる。
- (I) 高度な専門的技術への対応能力を養成する。
- (I-1)より高度な専門的技術の修得(たとえば大学院での学習)に対応できる, 基礎的学力と応用能力を習得 する.
- (D)電気・電子・情報工学分野に関する基礎知識を養成する。 (D-1)電気工学分野に関する基礎知識を理解できる。 (D-3)情報通信工学分野に関する基礎知識を理解できる。

- (I) 高度な専門的技術への対応能力を養成する。
- (I-1)より高度な専門的技術の修得(たとえば大学院での学習)に対応できる、基礎的学力と応用能力を習得 する.

達成目標:

- 1. 時間領域と周波数領域の概念を把握できる。
- 2. 連続系と離散値系での違いを理解できる。
- 3. 離散値系でのZ変換を理解し、使える。
- 4. 離散値系における周波数特性を計算できる
- 5. Z変換における入力信号、出力信号、伝達関数の関係が理解できている。
- 6. 離散値系でのインパルス応答波形を算出できる。

【授業キーワード】

複素数と複素関数、等比級数、伝達関数とインパルス応答、周波数領域と時間領域、連続系と離散値系、サンプリング定理、フーリエ変換、ラプラス変換、Z変換、FIRフィルタ、IIRフィルタ

【授業内容及び授業方法】

ディジタル信号処理に必要な数学的手法を反復学習しながら、ディジタル信号処理の基礎を修得する。各 章ごとの演習問題の具体的な解答を行いながら、離散値系に対する工学の修得を深める。

- 1.信号とシステム(2.5回)
- 2.線形時不変システム(2回)
- 3.連続時間の信号とシステムにおけるフーリエ解析(2回) 4.離散時間の信号とシステムにおけるフーリエ解析(4回)
- 5.ラプラス変換(0.5回)
- 6.Z変換(3回)
- 7. 学期末試験(1回)

【教科書】

「ディジタル信号処理の基礎」島田正治他、コロナ社、ISBN4-339-00783-8

【参考書】

「Signals & Systems」A.V.Oppenheim, A.S.Willsky, Prentice Hall, ISBN 0-13-651175-9 「信号とシステム (1),(2),(3),(4)」伊達玄 訳、コロナ社、ISBN 4-339-00476-6, 4-339-00477-4 「ディジタル信号処理の基礎」 辻井重男、コロナ社、ISBN 4-88552-068-1 「わかりやすいディジタル信号処理」 また、アスト は、アスト 「ディジタル信号処理」辻井重男、鎌田一雄、昭晃堂、ISBN4-7856-2006-4

【成績の評価方法と評価項目】

- 1) 学期末試験:
- ・学期末に筆記試験を実施。成績開示希望者に対して次週、教員室にて各個人毎に解答考察を行い、成績 を知らせる。
- ・80点を満点とする。
- ・残りの20点はレポート点に振り分ける。
- 2)レポート点:
- ・各個人毎の講義の内容理解度判断材料とすると共に、2度と同じ間違いをしない意味で、レポート提出を

- 行う。次週の講義の中でレポートの解答を板書するので、ノートに記録し解答方法を学ぶ。 ・各章末毎の演習問題を講義の前後に出すので、その週の金曜日13:00までに教員室502室にレポートを提 出。
- ロ。 ・レポート点算出法は、提出回数が一番多い者を20点に割り当て、さらに、各レポートの採点は、解答内容がある程度できた(A)、問題の未解答(B)、未提出(C)の3段階表示とする。返却レポートの評点がB,Cの者は、返却したその週の金曜日までに、出来なかった箇所を再レポートとして、提出すれば、評点をそれぞれA,Bとすることができる。但し、返却されたレポートも添付すること。

【留意事項】

本講義は情報系・通信系・制御系にとって必須である。少なくとも複素関数論、等比級数、連続系でのフーリエ変換、ラプラス変換を修得していること。3学年1学期の信号理論基礎からつながる科目である。

Information Theory

【担当教員】

中川 健治

【教員室または連絡先】

居室:電気1号棟5階507室、内線9523, E-mail nakagawa@nagaokaut.ac.jp

【授業目的及び達成目標】

授業目的

情報を符号化して圧縮するための基礎理論である情報源符号化、および、情報を誤りのある通信路を通して 伝送するための基礎理論である通信路符号化について学ぶ。符号の特性の限界を示す定理を理解し、エン トロピーが情報源符号化にとって重要な量であること、および通信路容量が通信路符号化にとって重要な量 であることを知る。具体的な符号化アルゴリズムおよび復号アルゴリズムについて学ぶ。

学習•教育目標

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分野 の技術者として要求される、発展的な専門知識を修得している。

- 1. エントロピーの定義を理解し、情報源が与えられたとき、そのエントロピーを電卓を使って数値的に計算で きること。
- 2. 与えられた符号の平均符号長を計算できること。
- 3. 情報源符号化定理を理解すること
- 4. ハフマン符号化のアルゴリズムを理解し、与えられた情報源に対してハフマン符号化を実行し、その平均符号長と情報源のエントロピーを比較すること。
- 5. 2つの情報源X,Yに対して、条件付エントロピー H(X|Y)と相互情報量I(X,Y)の定義を理解し、与えられた2つの情報源X,Yに対してH(X|Y)とI(X,Y)を電卓を使って数値的に計算できること。
- 6. 与えられた通信路の通信路容量を計算できること
- 7. 情報速度の定義、および、通信路符号化定理を理解すること
- 8. 線形符号の生成行列と検査行列について理解し、簡単な符号に対してその符号長、検査記号数、情報 ブロック長、最小距離を計算できること
- 9. 簡単な符号に対して受信系列から正しい送信系列を得るための復号アルゴリズムの計算を実行できるこ

【授業キーワード】

情報源符号化、エントロピー、情報源符号化定理、ハフマン符号、ランレングス符号、相互情報量、通信路 容量、通信路符号化定理

【授業内容及び授業方法】

指定した教科書に沿って講義を行う。適宜、小テストを行い、宿題を出す。

- 第1週.情報源のモデルとエントロピー
- 第2週. いろいろな符号化とその平均符号長
- 第3週. 情報源符号化定理
- 第4週. 具体的な符号-ハフマン符号 第5週. ランレングス符号、算術符号等
- 第6週. 結合エントロピーと条件付エントロピー
- 第7週. 相互情報量について
- 第8週. 通信路のモデルと誤り確率
- 第9週. 具体的な通信路モデルー2元対象通信路等第10週. 通信路容量とその計算
- 第11週. 通信路符号化定理
- 第12週. 誤り検出と訂正の理論
- 第13週. いろいろな通信路符号
- 第14週. 生成行列と検査行列 第15週. 期末試験

【教科書】

「情報理論」三木成彦著、コロナ社

【参考書】

「情報理論」今井秀樹著、昭晃堂

【成績の評価方法と評価項目】

宿題・小テストの合計を20点満点、および期末試験の得点を80点満点として成績を評価する。

【留意事項】

電気電子情報数学及び演習I」の確率統計に関する内容を理解していること。この講義内容は授業時間内の学習だけでは理解することが困難であり、自宅学習が必要である。

Theory of Information Transmission

【担当教員】

坪根 正

【教員室または連絡先】

電気1号棟306室, 内線: 9558, E-mail: tsubone@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

授業目的

情報伝送・通信に必要ないくつかの変復調の基礎を学び、それらの特徴を理解する。まず、フーリエ変換、サンプリング定理を復習し、信号の電力密度スペクトルの概念をもとに、信号と雑音の扱い方について学ぶ。 これらの解析法を用いて、各種通信方式(振幅変調AM・SSB ,角度変調FM・PM ,パルス変調PAM・PCM等)と変復調回路,そして雑音の影響の違いを理解する.そして,信号対雑音比,帯域の関係を知る.ディジタル伝送の基礎として,はりで、ASK ,FSK ,FSK を理解する.さらに,分布定数系の信号伝搬,光ファ イバ通信の基礎を理解する.

学習‧教育目標

(C) 電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分野 の技術者として要求される、発展的な専門知識を修得している

達成目標

- 1. 畳込み積分, フーリエ変換, サンプリング定理, 信号の電力密度スペクトルの概念をもとに, 信号と雑音の扱いができること.
- 2. 通信における基本的な変調方式(AM, SSB, FM等)について, その生成法, 特徴を理解していること
- 3. パルス列を利用する変調方式(PAM, PWM, PCM等)について、その生成法、特徴を理解していること。 4. ディジタル伝送での整合フィルタと信号対雑音比の関係を理解し、また、基本的なディジタル変調である
- ASK,FSK,PSKのビット誤り率が導出できること.
- 5. 分布定数系での信号の伝搬を理解すること.

【授業キーワード】

振幅変調, 角度変調, パルス変調, 信号対雑音比, ビット誤り率, ASK, FSK, PSK, 分布定数系, 光ファイバ

【授業内容及び授業方法】

指定した教科書に沿って講義を行う.適宜,補足のためのプリントを配付する.適宜,宿題を出す.中間試験 ,期末試験を行う.

【授業項目】

第1週 情報伝送工学概論,信号解析(フーリエ変換等の復習)

第2週 分布定数系の信号伝送

第3週 パワースペクトル,雑音の数学的取り扱い 第4~6週.変調の基礎,振幅変調(AM, SSB, 耐雑音性能) 第7~8週.角度変調(FM, PM, 耐雑音性能)

第9调 中間試験

第10週. パルス変調と耐雑音性能

第11週. パルス符号変調

第12週. ディジタル変調方式1, (ASKとFSK) 第13週. ディジタル変調方式2, (PSKとDPSK)

第14週. 光ファイバ通信の基礎を含む最近の伝送技術

第15週. 期末試験

【教科書】

「通信方式」 平松啓二著 コロナ社

【参考書】

「ディジタル通信」岩波保則著,コロナ社

【成績の評価方法と評価項目】

宿題の合計を20点満点,中間試験,期末試験の得点を各40点満点として,その合計で成績を評価する.

【留意事項】

受講者は必修科目である「電気電子情報数学及び演習」」(3年1学期)及び「信号理論基礎」(3年1学期)をよ く修得しておくこと. また、この講義内容は授業時間内の学習だけでは理解することが困難であり、自宅学習 が必要である.

講義 2単位 1学期

Operating Systems

【担当教員】

和田 安弘

【教員室または連絡先】

居室:電気1号棟6階608室、内線9534 E-mail:ywada@nagaokaut.ac.jp

【授業目的及び達成目標】

オペレーティングシステムは計算機システムを構成する資源の効率的利用のために、計算機をユーザーに できるだけ使い易く提供するためのものである。本講義では、オペレーティングシステムを理解するために、 その機能およびアルゴリズムなどに関して、多くのシステムに適用されている基本概念について学ぶ。

学習•教育目標

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している。

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者として要求される、発展的な専門知識を修得している。

達成目標

オペレーティングシステムに共通の基本概念を習得し、計算機システムの改良・開発のための土台を築く。 そのために、以下に関して理解・習得する。

・オペレーティングシステムの構成を説明できること。・オペレーティングシステムの基本機能であるプロセス管理、メモリ管理、プロセス同期通信制御、ファイル管 理、割り込み制御、入出力制御について理解し、その基礎的概念の説明ができること。

【授業キーワード】

システム制御、プロセス管理、メモリ管理、プロセス間通信制御、ファイル管理、割り込み制御、入出力制御

【授業内容及び授業方法】

オペレーティングシステムの基本構成・機能とその動作原理について、その処理の基本概念を学習し、その 機能を実現するためのプログラム構造の概要について学習する。指定した教科書に沿って講義を行い、適 宜、宿題をだす。

【授業項目】

第1週:計算機の基礎:オペレーティングシステムとは?

第2週:オペレーティングシステムの構成・システム制御・割り込み制御

第3週:プロセスの状態と管理

第4週:CPUスケジューリング

第5週~第6週:プロセス間通信(排他制御、セマフォ、モニタ、デッドロック)

第7週:中間テスト

第8週~第9週:実記憶の管理

第10週~第12週:仮想記憶の管理(アドレス変換・ページング・セグメンテーション・管理技法・置き換え技 法)

第13週:ファイルシステムと入出力制御

第14週:ファイル管理とUNIX

第15週:期末テスト

【教科書】

「オペレーティングシステム」松尾啓志著、森北出版

【参考書】

参考書は特に指定しない。

【成績の評価方法と評価項目】

中間試験(45点), 期末試験(45点)と宿題(10点)の合計100点満点によって評価する。

【留意事項】

受講者は、電子計算機システムに関する基礎を理解していることが望ましい。

また、「情報処理技術者試験」と関連の深い内容を含んでおり、将来、当 該試験の受験を希望するものは、 受講することを推奨する。

授業時間だけでは、この講義の内容を理解し、その理解を定着させることはできません。授業の復習は必ずするようにしてください。毎回の授業の終わりに簡単な演習問題を配ります。そこには、その回の授業の重要なポイントが示してありますから、そのポイントを中心に復習をするようにしてください。宿題も、授業の復習を かねていますから、必ず提出してください。

最適化理論とその応用

講義 2単位 2学期

Theory of Optimization and its Applications

【担当教員】

中川 匡弘

【教員室または連絡先】

電気1号棟 609室 内線 9535

【授業目的及び達成目標】

【授業目的】

最適化理論の基礎とその応用について、離散最適化から連続系の変分原理に係る最適化手法に至るま での基礎を適宜具体的な問題を解きながら習得する.

【学習·教育目標】

- (C)電気電子情報工学分野の技術者として必要な専門知識を修得している
- (C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分野の技術者を目指すべく、各分野におけるさらに発展的な専門知識を修得している

【達成目標】

- 1. 最適化手法の分類について学習する.
- 2. 線形システムの最適化について習得する.
- 3. 感度解析とパラメトリック線形計画について習得する. 4. 整数解計画法について習得する. 5. 一般線形計画法について習得する.

- 6. 非線形計画法の基礎について習得する.
- 7.2次計画法とニューラルネット解法について習得する
- 8. 変分原理とポントリァギンの最大原理について習得する.
- 9. 動的計画法について理解する.
 10. 最適化と遺伝的アルゴリズムについて理解する.

【授業キーワード】

最適化,線形計画法,非線形計画法,2次計画法,ニューラルネット,変分原理,ポントリァギンの最大原理, 動的計画法,遺伝的アルゴリズム

【授業内容及び授業方法】

まず,最適化手法の分類と数理計画法の基礎から入り,線形計画法,非線形計画法の基礎について講述 する. 次いで、2次計画法とニューラル解法、変分原理とポントリァギンの最大原理について教授し、さらに、 関数漸化式による動的計画法と遺伝的アルゴリズムによる最適問題解法の基礎について講述する.

【授業項目】

- 1. 最適化手法の分類
- 2. 線形システムの最適化
- 3. 感度解析とパラメトリック線形計画.
- 4. 整数解計画法.
- 5. 一般線形計画法
- 6. 非線形計画法の基礎
- 7.2次計画法とニューラルネット解法.
- 8. 変分原理とポントリアギンの最大原理.
- 9. 動的計画法.
- 10. 最適化と遺伝的アルゴリズム.

【教科書】

特になし.

【参考書】

特になし.

【成績の評価方法と評価項目】

中間(50%)・期末テスト(50%)(各1回)の結果より、左記の割合で総合的に評価し、60点以上を合格とする

【留意事項】

講義時間内の学習は困難な場合には、自宅学習が必要である.

Data Structures and Algorithms

【担当教員】

武井 由智

【教員室または連絡先】

電気1号棟506室(内線:9522, e-mail:takei@nagaokaut.ac.jp)

【授業目的及び達成目標】

高度なプログラミングに必要な基本データ構造やアルゴリズムについて理解し、高度なプログラミングに必要 な能力をつける.

学習•教育目標:

(C) 電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれか の分野の技術者として要求される、発展的な専門知識を修得している.

2. プログラング言語で表現されたプログラムから、データ構造の表現、処理の概要、及び、概略の計算量を理解し説明できること。2. 解決したい問題に対して、データの性質と処理すべき内容に適したデータ構造を選択し、処理の概要を説明できること。3. 主要なデータ構造の表現、処理アルゴリズム、特徴を理解し説明できること。4. ソーティング、探索、マッチング、グラフ関連のアルゴリズムの概要を理解し、利用するデータは表別に表すること。 構造と関連づけて説明できること.

【授業キーワード】

繰返しと再帰,組合せ問題,ソート,連結リスト,木構造,グラフの表現

【授業内容及び授業方法】

まず、アルゴリズムの基礎となる繰り返しと再帰の性質、また、リスト、木構造、グラフなど代表的データ構造の性質を例題を用いて学習し、これらの重要性を認識する.次に、ソート、探索、ハッシュ法、マッチング、グラフ処理といった代表的問題における、データの処理アルゴリズムとその特徴について学ぶ。この授業では、アルゴリズムやデータ構造を正確かつ具体的に理解するため、C言語によるプログラムの例を中心に学習す る.

【授業項目】

- 1. アルゴリズムの基礎概念I(問題のサイズ, 計算量, オーダー, 番兵, 繰返し, ホーナー法) 2. アルゴリズムの基礎概念II(再帰, ユークリッド互除法, グラフの基礎)
- 2. アルコッスムの基礎(M. C. II (円/hr, ユーケッット 日, R. C., ク ノンの基礎)
 3. 基本データ構造とその実現I(線形リストとその探索, 連結リスト, スタックとキュー)
 4. 基本データ構造とその実現II(木, ヒープ)
 5. ソーティングI (直接ソート, マージソート)
 6. ソーティングII (クイックソート, ヒープソート)
 7. 探索のためのデータ構造(ハッシュ法, 第k 位選択, 2分探索木)

- 8. 中間試験
- 9. 2分探索木 (2色木) 10. 文字列マッチング [(クヌース・モーリス・プラットのアルゴリズム)
- 11. 文字列マッチング[[(ボイヤー・ムーアのアルゴリズム)
- 12. グラフアルゴリズムI(グラフ表現,トポロジカルソート,グラフの探索)
- 13. グラフアルゴリズムII(最小スパニング木, 最短路)
- 14. 組合せ問題(順列,組合せ,分割統治法,ナップサック問題,ダイナミックプログラミング)
- 15. 期末試験

【教科書】

「アルゴリズムとデータ構造 改訂 C言語版」, 平田富夫著, 森北出版.

【参考書】

「Cで学ぶデータ構造とプログラム」, L. Ammeraal 著, 小山裕徳 訳, オーム社. 「プログラミングに活かすデータ構造とアルゴリズムの基礎知識」, 今泉 貴史 著, アスキー. 他に必要に応じて授業中に資料を配布する.

【成績の評価方法と評価項目】

中間試験(30点満点), 期末試験(40点満点), 演習と宿題(30点満点)の得点合計により評価する.

【留意事項】

受講者はC言語の基礎知識を有し、プログラミングの経験を持っていること、「情報処理技術者試験」と関連 の深い内容を含んでおり、将来、当該試験の受験を希望するものは、受講することを推奨する.取り上げたアルゴリズムを自分でプログラム実装し、デバッガの下でステップ実行しつつメモリ上のデータ構造の変化を紙 に書いていくことが大変良い訓練であり、推奨する.

【参照ホームページアドレス】

http://act-w.nagaokaut.ac.jp/DSandA/

音響工学 講義 2単位 1学期

Acoustic Engineering

【担当教員】

島田正治

【教員室または連絡先】

居室:電気1号棟5階502室、内線9518 Email:shimada@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

授業目的:人間の会話や意思伝達に必要な音声の発生機構や聴覚機構、音波の波動方程式、電気信号を空気振動にかえて音波として発生させる電気音響変換機構とその逆変換機構、マイク・スピーカの動作原理等の基本的な考え方や原理を収得する。

学習•教育目標:

- (D)電気・電子・情報工学分野に関する基礎知識を養成する。
- (D-1)電気工学分野に関する基礎知識を理解できる。
- (D-3)情報通信工学分野に関する基礎知識を理解できる。
- (I) 高度な専門的技術への対応能力を養成する。
- (I-1)より高度な専門的技術の修得(たとえば大学院での学習)に対応できる, 基礎的学力と応用能力を習得 する.

達成目標:

- 1. 音圧レベルと実効値、音の単位を理解し、使えるようにする。

- 2. 知覚の中の聴覚、発声機構とその特徴を理解する。 3. 機械振動の種類とその動作を微分方程式から導出して、その振る舞いを理解する。 4. 音波の波動方程式を1次元音響管モデルから2次元平面波モデルまで考慮し、その具体的な例をあげて 、音圧分布、音響インピーダンスの導出の仕方などを理解する。
- 5. 室内の反射による残響の定義とエネルギー減衰の考え方を理解する。
- 6. 電気信号から音波の放射までの理論的な考え方、また音波を電気信号に変換する変換の理論的な考え 方を学び、具体的なスピーカ、マイクの構造と種類について理解する。

【授業キーワード】

音速、音圧レベル、音の強さ、特性インピーダンス、聴覚構造とその心理的特徴、可聴範囲、聴力、マスキン グ、発声周波数範囲、単一共振系、弦振動、ヘルムホルツ共鳴管、音響フィルタ、無限大バッフル板、残響 時間、電気音響変換、スピーカ・マイクの構造・動作・特性

【授業内容及び授業方法】

基本的には教科書に沿い、教科書に不足している内容(主に理論式の導出)を補いながら講義を進める。各 章ごとに実際に則したレポート演習問題を出題し、その具体的な解答を行いながら、音に対する工学の収得 を深める。

【授業項目】

- 1. 音の歴史、音の単位と定義(2回)
- 2. 音と人(聴覚機構、発声機構)(2回)
- 3. 振動(3回)
- 4. 音波(3回)
- 5. 囲いの中の音(残響)(2回)
- 6. 音と電気(電気音響変換)(2回)
- 7. 学期末試験(1回)

【教科書】

「基礎音響工学」城戸健一、コロナ社、ISBN 4-339-00350-6

【参考書】

- 「現代音響学」牧田康雄、オーム社、ISBN 4-274-12813-X 「音響工学」三井田惇郎、昭晃堂、ISBN 4-7856-0114-0
- 「音響工学」城戸健一、コロナ社、ISBN4-339-00040-X
- 「技術者のための音響工学」早坂寿雄、丸善、ISBN 4-621-03087-6
- 「音と音波」小橋 豊、裳華房、ISBN 4-7853-2104-0 「電気音響振動工学」西巻正郎、コロナ社、ISBN 4-339-00076-0
- 「電気音響工学」実吉純一、コロナ社、ISBN 4-339-00171-6

【成績の評価方法と評価項目】

- 1) 学期末試験:
- ・学期末に筆記試験を実施。成績開示希望者に対して次週、教員室にて各個人毎に解答考察を行い、成績 を知らせる。
- ・80点を満点とする。
- ・残りの20点はレポート点に振り分ける。
- 2)レポート点:
- ・レポート提出の目的は、各個人毎の講義の内容理解度判断材料とすると共に、2度と同じ間違いをしない 意味で、次週の講義の中でレポートの解答を板書するので、ノートに記録し解答方法を学ぶ。

- ・各章末毎の演習問題を講義の前後に出すので、その週の金曜日13:00までに教員室502室にレポートを提
- 出。 ・レポート点算出法は、提出回数が一番多い者を20点に割り当て、さらに、各レポートの採点は、解答内容がある程度できた(A)、問題の未解答(B)、未提出(C)の3段階表示とする。

【留意事項】

本講義は少なくとも、電磁気学、電気回路及び演習、およびディジタル信号処理基礎を修得していることが望ましい。

Database Management Systems and Applications

【担当教員】

湯川 高志

【教員室または連絡先】

居室: 電気1号棟6階606室, 内線9532, E-mail: yukawa@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

授業目的:

データベースシステム、特にリレーショナルデータベース(RDB)システムに関する基礎的な知識とその応用シ ステムについての知識を習得する. 加えて現代的な情報検索システムの動作原理についての知識を習得す る.まずデータベースとは何か、なぜ必要かを理解し、RDB理論の基礎を学ぶ.続いてRDBの問合わせに用 いられるSQL言語に関する基礎的な知識と実習を通じた利用技能を身につけるとともに、RDB管理ソフトウェ アにおける情報検索処理手法について学ぶ. さらに、データベースを用いた様々な応用システムについて概載するとともに、それらのシステムの設計と管理に関する知識を習得する. 加えて、全文検索システム、 WWW検索システム,マルチメディア検索システムについてそれらの動作原理を学ぶ.

学習·教育目標:

(C) 電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分野の技術者として要求される、発展的な専門知識を修得している

達成目標:

- ・データベースシステムのコンピュータシステム内における位置づけを理解し説明できること。
- ・RDBにおける主要概念を理解し説明できること.
- ・RDBの主要な演算について理解し、簡単なテーブルに対し手計算により演算ができること.
- ・簡単な検索要求をSQL言語により表現できること
- ・演算を含む検索要求をSQL言語により表現できること

- ・SQL言語で記述された情報検索についてのRDB管理ソフトウェアの動作を説明できること。 ・応用システムの構成の分類について理解し説明できること。 ・データベースを用いた応用システムにおけるシステム管理手法とデータの保全について理解し説明できる
- ・全文検索システム、WWW検索システム、マルチメディア検索システムの動作原理を理解し説明できること

【授業キーワード】

電子計算機, コンピュータ, 情報処理, データベース, リレーショナルデータベース, データベース管理ソフト ウェア, 情報検索, 全文検索, WWW, マルチメディア, 応用システム, システム設計, システム管理

【授業内容及び授業方法】

教科書と補助資料に沿って, データベースシステムとそれを用いた応用システムについての基礎を概説する . 必要に応じて宿題(レポート)を課す.

【授業項目】

第1回 データベースシステムとは?

第2回 RDBの理論(1)

第3回 RDBの理論(2)

第4回 RDB設計論(1)

第5回 RDB設計論(2)

第6回 RDB管理システム, 問合せ言語SQL(1)

第7回 間合せ言語SQL(2)

第8回 中間試験

第9回 中間試験の解説,RDBMSにおける情報検索の処理手法

第10回 物理的データ格納方式, 問合せ処理

第11回 システムの管理とデータの保全

第12回 応用システム, データマート, データマイニング

第13回 全文検索システムとWWW検索

第14回 期末試験

第15回 期末試験の解説,発展的話題(マルチメディアデータベース)

【教科書】

「データベースシステム」 北川博之著 昭晃堂

【参考書】

「データベース構築の理論と実際」原田勝,今井恒雄,平木茂子著 コロナ社

「Modern Information Retrieval」Ricardo Baeza-Yates, Berthier Ribeiro-Net著 Addison Wesley

【成績の評価方法と評価項目】

中間・期末テスト(80%), 宿題レポート(合計20%)を総合して評価する. 60点に満たなかった者には別途試験を 行うことがある. ただし、別途試験を受験できるのは、すべてのテストを受験し、すべてのレポートを提出して

いる者に限る. テストやレポートでは、達成目標に記した各項目についての問題や課題を出す.

【留意事項】

「情報処理技術者試験」と関連の深い内容を含んでおり、将来、当該試験の受験を希望するものは、受講することを推奨する.

講義資料を授業前日までにweb上に掲載するので、予習・復習に利用すること。また、SQL言語によるデータベースへの問合せを容易に試すことができるソフトウェア・パッケージ(NiigataLinux)を提供するので、それを用いて自習することを推奨する.

【参照ホームページアドレス】

http://kslab.nagaokaut.ac.jp/mdl18/ 湯川の講義WEBサイト

Image Engineering and Image Processing

【担当教員】

石原 康利

【教員室または連絡先】

非常勤講師

【授業目的及び達成目標】

【授業目的】

信号の離散化・量子化によって、多くの情報メディアで同一の処理が行えるようになっている。このようなマルチメディア情報処理の中で、特に画像伝送・変換・認識・理解等を目的とした画像処理は、情報通信分野において欠く事のできない重要な技術となっている。

本講義では、画像を信号として処理する基本的な概念と手法とについて学習し、画像処理に関する基本知 識を習得する。また、マルチメディア情報処理技術に関連した画像入出力装置や、画像シミュレーション技 術につながる種々のアルゴリズムを理解する。

【学習·教育目標】

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者として要求される、発展的な専門知識を修得している

【達成目標】

・離散時間信号のフーリエ変換を計算できること

- ・画像フィルタを含めた離散時間システムの周波数特性を解析できること。
- ・基底配列を用いた直交変換を計算できること。・パターン認識に必要な処理を説明できること。
- ・画像圧縮の原理を説明できること。

【授業キーワード】

離散フーリエ変換、周波数解析、画像処理、画像フィルタ、直交変換、パターン認識、特徴空間、クラスタリン グ、画像・信号圧縮(マルチメディア表現)

【授業内容及び授業方法】

- ・指定の教科書に沿って講義を行う
- 授業中に配布されるプリントを併用する
- ・演習時間を設け、講義内容に関する習得度を確認する。

【授業項目】

第1週 離散時間信号と離散時間システム 第2週 離散時間信号とその解析 第3週 離散フーリエ変換

第4週 離散時間システムの周波数特性 第5週 離散時間システムの構成

第6週 2次元システムとディジタル画像

画像の入出力 第7週

第8週 中間試験

第9週 画像のフィルタリング

第10週 画像の直交変換

第11週 2値画像処理

第12週 特徴空間とクラスタリング

第13週 パターンマッチング

第14週 画像の圧縮

第15週 期末試験

【教科書】

「信号画像処理」,長橋 宏著,昭晃堂

【参考書】

「画像の処理と認識」, 安居院 猛, 長尾 智晴, 昭晃堂

【成績の評価方法と評価項目】

中間試験および期末試験の得点(各50点)の合計点により100点満点で総合評価する。その結果、60点未満 の者に対して別途試験を行う場合がある。この試験で60点以上を獲得すれば、最終成績60点として単位を 認定する。

【留意事項】

学習内容について不明な点は、速やかに担当教員まで質問に来ること 講義時間に出題する演習問題については、本講義の重要なポイントを含んでいるため、必ず復習し理解す ること。

【参照ホームページアドレス】

http://ishihara.nagaokaut.ac.jp

Wireless systems

【担当教員】

荻原 春生

【教員室または連絡先】

電気1号棟503号室、内線9519、ogiwara @vos.nagaokaut.ac.jp

【授業目的及び達成目標】

授業目的及び達成目標

前半は、各種システムの理解に共通な基礎事項を講義する。無線システムは、電波を利用して、通信・計測 を行う。まず、電磁気学の基礎方程式であるマックスウェルの方程式から、電磁波の波動方程式を導出し、 電波の存在が理論的に予測されることを説明する。次に、電波を空間に放出/電波を受信するアンテナの 動作原理、特性の表し方、基本的なアンテナの構成を説明する。さらに、空間を伝播するときの、通信・計測に影響を与える要因とその性質について説明する。最後に、これらの要因のもとで、安定な通信を行うため の、変調・誤り訂正符号の概略を説明する。

後半は、電波を応用した各種システムの構成と、システム構成で考慮された要因を説明する。その中で、移 動通信について、詳しく説明する。さらに、最近、話題となる各種電波応用システム(衛星通信、無線LAN, 無線MAN,地上ディジタル放送、GPS,RFID,ETC)の構成と性能について説明する

学習•教育目標

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者として要求される、発展的な専門知識を修得している

- 1. マックスウェルの方程式から電磁波の存在が導出できることを理解する。
- 2. アンテナの基礎特性の表し方と、基本的な構成を理解する。
- 3. 電波の伝播特性を理解する。
- 4. ディジタル変調と誤り訂正符号の基礎を理解する。 5. 移動通信システムの設計に考慮すべき要因とその対応策を理解する。
- 6. 各種電波応用システムの構成を理解する。

【授業キーワード】

マックスウェルの方程式、アンテナ、電波伝搬、変調、移動通信

【授業内容及び授業方法】

授業内容及び授業方法

前半では、各種電波応用システムに共通した基礎事項を講義し、後半では、各種システムに固有な要因と対応策、構成と特性を講義する。教科書を中心に、配布資料で補いながら進める。適宜レポートを課す。

【授業項目】

授業項目

第1回~3回 電波の応用、無線通信の歴史、電波の分類と用途、マックスウェルの式から波動方程式の導 出、

第4回~5回 アンテナの特性の諸量、各種アンテナの構成と特性

第6回~7回 電波伝搬

第8回~9回 変調、誤り訂正符号

第10回~12回 移動通信システム

第13回~15回 各種電波応用システム

【教科書】

大友、小園、熊澤"ワイヤレス通信工学"コロナ社。

【参考書】

坂田、嶋本"無線通信技術大全"リックテレコム、 笹岡"移動通信"オーム社。

【成績の評価方法と評価項目】

レポートの評価に基づく。

【留意事項】

この講義内容は授業時間内の学習だけでは理解することが困難であり、自宅学習が必要である。

【参照ホームページアドレス】

http://comm.nagaokaut.ac.jp

Communication System

【担当教員】

荻原 春生

【教員室または連絡先】

電気1号棟503室 ogiwara@vos.nagaokaut.ac.jp

【授業目的及び達成目標】

授業目的

ディジタル通信システム、ディジタル記憶装置の高信頼化に重要な誤り訂正符号の初歩と、盗聴・改ざんへ の対策である暗号理論の基礎、ディジタル通信ネットワークの構成・解析に必要なトラヒック理論・待ち行列理 論の初歩を修得する。

学習•教育目標

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分 野の技術者として要求される、発展的な専門知識を修得している

達成目標

1. 誤り訂正符号の訂正能力と最小距離の関係を理解する。

2. 検査行列、生成行列の一方が与えられたとき、他方を導出できる。

2. 検量17列、生成17列の カル・テんられたこと、他力を等出てきる。 3. 有限体の基本的な計算ができる。 4. ハミング符号、BCH符号、リードソロモン符号の構成を理解する。 5. たたみこみ符号の符号器が与えられたとき、状態遷移図、トレリス線図が書ける。 6. ビタビアルゴリズムによるたたみこみ符号の復号法を理解する。

7. RSA暗号の構成、それを用いたディジタル署名の方法を理解する。

8. 到着とサービスの統計モデルを理解する。

9. 基本的な待ち行列モデルについて、定常状態確率、平均待ち時間、平均系内個数の導出法を理解する

【授業キーワード】

誤り訂正符号, 暗号, トラヒック理論, 待ち行列理論

【授業内容及び授業方法】

第1に、誤り訂正符号の原理を学び、その具体的構成法、特性について解説する。次に、暗号化鍵と復号鍵 が異なる公開鍵暗号の原理を説明する。最後に、トラヒック理論と待ち行列理論の初歩を学び、通信量の面 からの通信ネットワークの解析・設計手法を理解する。 随時レポートを課す。

【授業項目】

授業項目

第1部 誤り訂正符号

(第1から3週)

誤り検出・訂正の原理(パリティ検査,垂直水平パリティ検査,ハミング符号,ハミング距離と検出・訂正能力, 組織符号)、線形符号とその性質,有限体,パリティ検査行列,行基本操作,規約梯形行列,最小距離と最小 重み,

(第4週から7週)

離散フーリエ変換,DFT符号,有限体,ユークリッド互除法,フェルマーの小定理,体の拡大,拡大体、巡回 符号、符号多項式、生成多項式、CRC検査、リード・ソロモン符号、BCH符号、多数決論理復号、多数決論理、差集合、差集合巡回符号

(第8週から10週)

畳み込み符号、畳み込み符号器,トレリス線図,状態遷移図,硬判定復号,軟判定復号,ビタビアルゴリズム,復号特性の解析法、誤り訂正の効果、変調を考慮した符号化:符号化変調,情報理論の限界に迫る符 号化:ターボ符号

第2部 暗号

(第11週から12週)

秘密鍵暗号, 公開鍵暗号, ディジタル書名, 認証 第3部 待ち行列理論

(第13週から15週)

到着とサービスの統計モデル、ポアッソン到着,到着間隔,サービス時間の統計モデル,待ち行列、リトルの公式,M/M/1待ち行列,統計的平衡狀態,平均待ち時間,平均系内個数,待ち席数が有限の場合, M/M/1/K待ち行列, 複数窓口の場合, 即時式の場合, アーランB式

【教科書】

荻原春生、中川健治「情報通信理論1-符号理論と待ち行列理論」森北出版

【参考書】

太田和夫、黒沢 馨、渡辺 治「情報セキュリティの科学」講談社 Blue Backs

【成績の評価方法と評価項目】

レポートの評価に基づく。

【留意事項】

本講義は通信工学だけでなく、データ通信、計算機オペレイティングシステムなどの情報処理の分野にも深く関係している。また、この講義内容は授業時間内の学習だけでは理解することが困難であり、自宅学習が必要である。

【参照ホームページアドレス】

http://comm.nagaokaut.ac.jp

Cybernetics Engineering

【担当教員】

和田 安弘·石原 康利

【教員室または連絡先】

居室(和田):電気1号棟6階608室, 内線9534 ywada@vos.nagaokaut.ac.jp 非常勤講師(石原)

【授業目的及び達成目標】

【授業目的】

近年の情報・通信を初めとしたエレクトロニクス分野の著しい発展に、生体の並列・分散・階層的な情報処理 近年の情報・通信を初めとしたエレクトロニクス分野の者しい発展に、生体の並列・分散・階層的な情報処理 過程・制御機構を模した技術が大きく貢献している。特に、脳の情報処理過程から得られる知見は非常に重 要であり、脳の情報処理過程を計測し、それに基づいた計算論的あるいは構成論的な脳の情報処理を理解 することが必要となっている。本講義では、生体情報計測の基礎と脳の情報処理のメカニズムを学ぶことを目 的とする。生体情報計測については、特にその可視化に関する基本技術について講述する。また、脳の情 報処理を理解するための基礎として、脳の構造、神経回路網、感覚・運動・制御系を学習・理解する。

【学習·教育目標】

(C)電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分野の技術者として要求される、発展的な専門知識を修得している

【達成目標】

- ・脳の構造、神経回路網、感覚・運動・制御系の基礎を習得すること。
- ・ニューラルネットワークの計算メカニズムを理解すること
- ・ニューラルネットワークの学習メカニズムを理解し、計算機プログラミングができること。
- ・ニューラルネットワークの制御系への応用方法を理解すること
- ・PET・MRI・CTを初め、種々の物理パラメータを利用した生体情報計測・可視化技術に関して、原理・現状・ 問題点を把握し、医用工学の理解を深めること。

【授業キーワード】

脳の構造、感覚、運動・制御系、ニューラルネットワーク、学習、生体情報の可視化、PET、CT、MRI

【授業内容及び授業方法】

配布資料等に沿って講義を行なう。

【授業項目】

第1週:ニューラルネットワークによる情報処理と脳研究 第2週:ニューラルネットワークモデルの計算・学習メカニズムの数学的基礎

第3週:ニューラルネットワークモデルの計算メカニズム

第4週:ニューラルネットワークモデルの学習メカニズム

第5週:ヒト運動系と運動制御の計算理論

第6週:ニューラルネットワークモデルの制御系への適用

第7週:中間試験

第8週:脳の構造と脳の機能

第9週:脳を計測する技術・機器

第10週:CTの原理と装置構成

第11週:MRIの原理と装置構成

第12週:f-MRIの原理

第13週:PET/光トポグラフィ/MEGの原理

第14週:超音波による生体計測の原理

第15週:期末試験

【教科書】

教科書は指定しない。

【参考書】

「生体情報処理」大西昇著 昭晃堂

「ニューラルネットワーク情報処理」麻生英樹著 産業図書

「生体情報の可視化技術」 生体情報の可視化技術編集委員会編 コロナ社「ビジョン」デビット・マー著 乾 敏郎、安藤広志訳 産業図書「脳工学」武田常広(著)、電子情報通信学会

【成績の評価方法と評価項目】

中間試験および期末試験の得点をそれぞれ50点満点として、それらの合計点により100点満点で総合評価 する。その結果が60点未満の者に対して別途試験を行う場合がある。別途試験で60点以上の得点をとれば 、60点として単位を認定する。

講義時間に出題する演習問題や課題については、本講義の重要なポイントを含んでいるため、必ず復習し

理解すること。

ネットワーク工学及び演習

講/演 3単位 1学期

Network Engineering and Exercise

【担当教員】

武井 由智・山本 寬

【教員室または連絡先】

武井 由智: 電気1号棟506室(内線: 9522, e-mail: takei@nagaokaut.ac.ip) 杉田 泰則: 電気1号棟316室(内線: 9537, e-mail: sugita@vos.nagaokaut.ac.jp)

【授業目的及び達成目標】

授業目的:

計算機ネットワーク,特に全世界の計算機を結び相互通信を可能としているインターネットは,社会的基盤と して不可欠のものになりつつある。本科目は、主としてインターネットについて、ネットワークの構造や動作を理解すること、ネットワーク構築・運用の基礎知識を習得すること、及び、これら理解や知識を 具体的な演習で体得することを目的とする.

学習•教育目標:

(C) 電気電子情報工学分野の技術者として必要な専門知識を修得している

(C-2)「エネルギーシステム」「電子デバイス・光波エレクトロニクス」「情報・通信システム」のいずれかの分野 の技術者として要求される、発展的な専門知識を修得している.

- 1. 計算機ネットワーク接続の基本概念を理解し、実際に計算機をインターネット接続できること
- 2. インターネット上の代表的なサービスアプリケーションを知り、実際に設定運用できること 3. 階層モデル、プロトコル(通信規約)について理解し、インターネットプロトコルに従うプログラムを作成でき
- 4. ネットワークを利用する上での倫理, 運用ポリシー, セキュリティの重要性について理解すること.

【授業キーワード】

ネットワーク技術, プロトコル, インターネット, セキュリティ, Unix

【授業内容及び授業方法】

本科目は,講義と演習から成る.講義では,ネットワークの一般的な概念,関連するアプリケーション,ネット ワーク利用技術, プロトコル(通信規約), さらにセキュリティの概念が説明される. 演習では, 講義内容に対応 した、あるいは講義を補完する、計算機演習を行う。そこでは、定期的(2 週につき1 度程度) に出題される、 ネットワーク設定コマンドの利用法やネットワークプログラミングなどの課題に対して、出題時に指定する所定 期限までにレポート(プログラム, 実行結果等)を提出することが要求される.

【授業項目】

- 1. ネットワークによる接続と基本概念 LAN/WAN,トポロジー, 通信媒体, 運用ポリシー, 階層モデル
- 2. アプリケーション
 - サーバ・クライアントモデル、ウェブ、ファイル転送、メール、ファイル共有、名前解決
- 3. IP アドレス, ドメイン名 IP アドレス, DNS
- 4. TCP/IP (I)
 - プロトコルヘッダとC の構造体, プロトコルスタック, バイトオーダ
- 5. TCP/IP (II)
 - Internet Protocol
- 6. TCP/IP (III)
 - Internet Control Message Protocol, Transmission Control Protocol(1)
- - Transmission Control Protocol(2), User Datagram Protocol
- 8. 中間試験
- 9. TCP/IP プログラミング(I) ソケット, クライアントプログラミング
- 10. TCP/IP プログラミング(II)
 - サーバプログラミング
- 11. データリンク層 イーサネット,フレーム,MACアドレス
- 12. TCP/IP プログラミング(III)
 - 有用なライブラリ関数
- 13. 物理層
 - 光, 銅線, 無線のイーサネット
- 14. ネットワーク・セキュリティ
 セキュリティポリシー, プロトコルのセキュリティ, 実装のセキュリティ, 運用のセキュリティ, 攻撃と防御、暗号プロトコル
- 15. 期末試験

【教科書】

「基礎からわかるTCP/IPネットワーク実験プログラミング」 村山公保著、オーム社

【参考書】

特に指定しない.

【成績の評価方法と評価項目】

中間試験(20点満点),期末試験(20点満点),レポート(60点満点)の得点合計により評価する.

【留意事項】

C 言語の基本的知識を持つことが望ましい. 「情報処理技術者試験」と関連の深い内容を含んでおり,将来,当該試験の受験を希望するものは,受講することを推奨する.プログラミング課題には発展的な随意提出課題も含まれている. 一層の技術向上のために,授業時間外にもこれらの課題に精力的に取り組むことを期待する.

【参照ホームページアドレス】

http://act-w.nagaokaut.ac.jp/NEandE/

水力学 講義 2単位 1学期

Elementary Fluid Mechanics

【担当教員】

山田 昇•高橋 勉

【教員室または連絡先】

機械建設1号棟507室(山田) 機械建設1号棟601室(高橋)

【授業目的及び達成目標】

水・空気等の流動現象ならびに実用の流体計測機器・流体機械の機能を、比較的簡単な物理法則及び数 学的手法を用いて理解する。本科目は電気電子情報工学課程学習目標の(C-2)に寄与する.

【授業キーワード】

連続の式・運動方程式・エネルギー式・相似則・損失と抵抗

【授業内容及び授業方法】

前半では静水力学に重点を置いて、流体の粘性、表面張力、静止流体の圧力、圧力の測定、浮力等につ いて講述する。後半では理想流体の諸定理、粘性流体の流れと管摩擦に重点をおいて、ベルヌーイの定理 、運動量理論、管路内の流れ等について講述する。毎週、講義の最後に演習問題を行う。

【授業項目】

- 1. 流体の性質とその力学的取り扱い方 連続体の取り扱い、流体の種類、ニュートンの粘性法則
- 2. 流体の静力学

水深と圧力の関係、圧力の等方性、パスカルの原理

- 3. 流れの一次元的取り扱い 定常流と非定常流、ベルヌーイの定理
- 4. 運動量の法則

運動量保存則の流れに対する適用、流れにより作用する力

- 5. 管路内の流れ
 - 層流と乱流、圧力損失
- 6. 流れの相似則と次元解析 次元解析、レイノルズ数

【教科書】

「流体の力学」 須藤浩三・長谷川富市・白樫正高著 コロナ社

【成績の評価方法と評価項目】

- (1)評価方法
- 2回の試験(中間試験30%、期末試験40%)、課題レポート(30%)を総合して評価する。
- (2)評価項目
- 1. 連続体の概念を理解していること
- 2. 圧力の概念を理解し、容器内の圧力分布を評価できること

- 3. ベルヌーイの定理を理解し、流体力学的にエネルギー保存の法則を計算できること 4. 流体力学における運動量保存則を理解し、流れにより生じる力を計算できること 5. 管摩擦係数の概念を理解し、理想流体と実在流体の違いを考慮して流路の設計が出来ること 6. 無次元数の概念を理解し、流れ場の一般的取り扱いが出来ること

【留意事項】

講義時間のみでは理解度が不足しますので、予習、復習を欠かさないようにしてください。

工業力学 講義 2単位 1学期

Engineering Mechanics

【担当教員】

上村 靖司

【教員室または連絡先】

機械建設1号407棟室、内線9717、E-mail: kami@mech.nagaokaut.ac.jp

【授業目的及び達成目標】

身近な力学系に関する種々の現象について,それを支配する原理の概念を理解した上で, 具体的問題に 対して適切なモデルを構成し解くことができる能力を修得させることを目的とする。 具体的達成目標は次の通

(1)力のつりあい式あるいは運動方程式をたて解くことができること,(2)重心,分布力,慣性モーメントなど, 積分の式を立て解くことができること,(3)エネルギー・仕事の概念を理解し,その保存式を立てて問題を解 くことができること

なお、本科目は機械創造工学課程の学習目標(D)の達成に寄与する。また、電気電子情報工学課程学習 目標の(C-2)の達成に寄与する。

【授業キーワード】

力の釣り合い,分布力,重心,質点系の力学,剛体の力学,仕事・エネルギー,摩擦

【授業内容及び授業方法】

下記項目に沿って演習問題に重点を置き講述する。

【授業項目】

- ●平面的な力のつりあい 1. 力とベクトル(1週)

- 2. 力の合成・分解・つりあい(1週) 3. モーメントの概念とその分解・合成・つりあい(2週)
- ●質点および剛体の運動
- 4. 質点の運動(2週)
- 5. 中間試験
- 6. 重心と分布力(1週)
- 7. 回転運動と慣性モーメント(2週)
- 8. 剛体の運動(2週)
- ●エネルギーと摩擦
- 9. 仕事とエネルギー(1週)
- 10. 摩擦(1週)
- 11. 期末試験

【教科書】

「詳細工業力学」入江敏博著 理工学社

【参考書】

「仕事に役立つ微分・積分」伊澤・上村・黒須・高島・増淵・三田著 パワー社

【成績の評価方法と評価項目】

基本的に中間テスト(50%)と期末テスト(50%)で評価する。演習を重視することから,授業態度・出席の状況 を若干加味する(5%程度)。

【留意事項】

授業を効果的にするために予習を欠かさないようにすること。また講義した内容について、定期的に演習課 題を課します。

工業熱力学 講義 2単位 2学期

Engineering Thermodynamics

【担当教員】

鈴木 正太郎 門脇 敏

【教員室または連絡先】

機械建設1号棟604室(鈴木),機械建設1号棟502室(門脇)

【授業目的及び達成目標】

熱エネルギーと力学的エネルギー(仕事)とが関連する現象を, 熱力学の立場から基礎的に理解する. また, エントロピーやエクセルギーの概念を通して, 熱機関の熱効率や最大仕事を理解する. そして, 熱機関の基準サイクルを通しての熱力学の実践への応用を習得する.

【授業キーワード】

状態量,理想気体,熱力学の第一法則,熱力学の第二法則,エクセルギー

【授業内容及び授業方法】

熱力学の基礎的な取り扱いと熱機関への応用を並行させながら, 熱力学の実用的な捉え方を学習する. 毎回の講義において演習問題を解き、レポートとして提出する.

1. 熱力学の基礎的事項(2回)

記号と単位 状態量

2. 熱力学の第一法則(4回)

圧力-体積線図 比熱 烈力学の第一法則 絶対仕事

工業仕事

サイクルと機関

3. 理想気体(2回)

状態式

内部エネルギーとエンタルピー 状態変化 混合気体

4. 熱力学の第二法則(4回)

可逆変化と不可逆変化 エントロピ

カルノーサイクル

熱効率

....... クラウジウスの積分

5. エクセルギー(2回) 熱機関の最大仕事 エクセルギー

【教科書】

中島健著「やさしく学べる工業熱力学」森北出版

【参考書】

参考書は、谷下市松著「工業熱力学(基礎編)」裳華房など.

【成績の評価方法と評価項目】

成績評価の項目と配分は、試験8割、レポート2割とする.

【留意事項】

予習復習を充分行うこと.